DNA
DNA adalah rantai doble heliks berpilin yang berfungsi sebagi pewaris sifat dan sintesis protein.
Struktur DNA (deoxyribosenucleic acid) yaitu:
1. gula 5 karbon (deoksiribosa)
2. gugus fosfat
3. basa nitrogen.
Bentuk DNA adalah rantai double heliks berpilin ke kanan. Dalam DNA terdapat struktur-struktur di atas. Namun, jika diambil 1 lempeng yang mengandung ikatan fosfat, gula dan basa nitrogen, maka lempeng tersebut disebut nukleotida. Jika plat itu hanya basa nitrogen dan gula saja maka disebut nukleosida. Maka, DNA adalah polimer dari nukleotida.
Gula deoksiribosa pada DNA merupakan gula lima karbon yang kehilangan 1 atom oksigen. Gula deoksiribosa memegang basa nitrogen pada atom karbon nomor 1, sedangkan atom C nomor 5 berikatan dengan gugus fosfat. Gugus fosfat ini saling berikatan dengan gugus fosfat lainnya membentuk ikatan fosfodiester. Karena DNA merupakan rantai ganda dan atom-atom karbon mempunyai aturan diatas untuk mengikat basa nitrogen dan gugus fosfat maka satu rantai DNA terlihat berdiri tegak sedangkan rantai pasangannya justru terbalik. Maka pada notasi penulisan kode genetik DNA, ditulis 5’-kode genetik-3’, sedangkan untuk rantai pasangannya justru ditulis 3’-kode genetik-5’. Pengaturan ini disebut konfigurasi antiparalel.
Ada 4 jenis basa nitrogen yang berikatan pada DNA yaitu adenine, thymine, cytosine dan guanine. Berdasarkan struktur cincinnya, maka ada 2 kelompok basa nitrogen yaituu purin(adenine dan guanine yang bercincin 2) dan pirimidin(cytosine dan thymine yang bercincin satu, pada RNA, thymin diganti oleh uracil). Basa Purin selalu berpasangan dengan basa pirimidin melalui ikatan hidrogen. Adenine selalu berpasangan dengan hymine melalui 2 ikatan hidrogen sedangkan cytosine berpasangan dengan guanine melalui 3 ikatan hidrogen.
REPLIKASI DNA
Replikasi DNA berarti penggandaan. Ada 3 model replikasi DNA yaitu :
1. Model konservatif. Model ini menyatakan bahwa 2 rantai DNA bereplikasi tanpa memisahkan rantai-rantainya
2. Model semi konservatif. Model ini menyatakan bahwa 2 rantai DNA berpisah kemudian bereplikasi
3. Model dispersig. Model ini menyatakan bahwa DNA terpecah menjadi potongan-potongan yang kemudian bereplikasi
Meselson dan Stahl membuktikan bahwa DNA bereplikasi sesuai model semi-konservatif.
Replikasi membutuhkan sesuatu untuk direplikasi, sesuatu yang mereplikasi dan batu bata yang membuat replikasi. DNA parental(DNA induk) bertindak sebagai cetakan (template). Proses replikasi terbagi atas 3 tahap:
• Inisiasi. Replikasi tidak berlangsung pada titik acak pada DNA namun berlangsung pada awal yang disebut tempat awal replikasi. Protein inisiator menempel pada daerah tersebut kemudian berikatan menyebatkan rantai heliks terbuka untuk menunjukkan satu rantai yang digunakan untuk membangun rantai baru.
• Elongasi. DNA polimerase bertugas untuk memasangkan basa nitrogen baru dengan rantai DNA lama sehingga terbentuklah rantai DNA yang baru. DNA polimerasememanmbahkan basa-basa baru ke ujung 3 rantai yang ada, kemudian mereka mensintesis dari arah 5’ ke 3’ dengan menyediakan rantai basa pasangan untuk cetakan. DNA polimerase juga butuh primer untuk memulai sintesis, primer ini bisa berupa pasangan basa nitrogen tertentu (Poly A atau TATA Box) atau rantai RNA
• Terminasi. Replikasi berakhir saat DNA Polimerase mengenali daerah basa nitrogen yang diulang-ulang, daerah ini disebut telomer.Maka terbentuklah rantai DNA yang baru.
Pada Sintesis protein, salah satu rantai DNA akan dikodekan oleh mRNA. Rantai yang dikodekan tersebut disebut DNA Sense atau DNA template, sedangkan rantai pasangannya yang tidak dicetak disebut DNA Antisense atau DNA Komplementer. Triplet kode-kode genetik DNA yang dikodekan oleh mRNA disebut kodogen.
RNA
Berbeda dengan DNA, RNA merupakan rantai panjang lurus yang berfungsi dalam sintesis protein. Terdapat 3 jenis RNA yaitu:
1. mRNA(messenger RNA atau RNA duta/RNAd), bertugas untuk mengkodekan kode genetik dari DNA untuk sintesis protein. Terdapat di anak inti.sel. Triplet kode genetik pada mRNA disebut kodon.
2. tRNA(transfer RNA atau RNAt), bertugas untuk mencocokkan triplet yang ada pada mRNA dengan protein yang sesuai. Terdapat di sitoplasma. Triplet kode genetik pada tRNA disebut antikodon.
3. rRNA(ribosomal RNA atau RNAr), bertugas untuk memasangkan kodon mRNA dengan antikodon tRNA dan menggeser rantai-rantai supaya terbentuk polipeptida(protein). Terdapat di ribosom.
Struktur RNA(ribosenucleic acid) yaitu
• Gula 5 karbon ribosa
• Gugus fosfat
• Basa nitrogen yang persis sama dengan basa nitrogen DNA namun pada mRNA thymine diganti dengan uracil.
PERSIAPAN SEBELUM SINTESIS PROTEIN
Sebelum sintesis protein dilakukan, perlulah diadakan persiapan yang menyeluruh, salah satunya pemasangan asam amino pada salah satu ujung tRNA. 1 asam amino harus diikatkan pasada salah satu ujung tRNA dengan antikodon yang benar, namun protein ini sesuai dengan kodon bukan antikodon. Enzim yang melakukan proses ini adalah enzim tRNA aminoasil sintetase. Enzim ini mengikatkan asam amino pada bagian sisi asam amino kemudian tRNA dengan antikodon spesifik untuk asam aminonya. tRNA dan asam amino berikatan pada enzim sebelum akhirnya dilepaskan.
SINTESIS PROTEIN
Sintesis protein adalah proses pembentukan protein dari monomer peptida yang diatur susunannya oleh kode genetik. Sintesis protein dimulai dari anak inti sel, sitoplasma dan ribosom. Sintesis protein terdiri dari 3 tahapan besar yaitu:
1. Transkripsi. DNA membuka menjadi 2 rantai terpisah. Karena mRNA berantai tunggal, maka salah satu rantai DNA ditranskripsi(dicopy, istilah lainnya). Rantai yang ditranskripsi dinamakan DNA sense atau template dan kode genetik yang dikode disebut kodogen. Sedangkan yang tidak ditranskripsi disebut DNA antisense/komplementer. RNA Polimerase membuka pilinan rantai DNA dan memasukkan nukleotida-nukleotida untuk berpasangan dengan DNA sense sehingga terbentuklah rantai mRNA. Contoh transkripsi:
Sense/Template 5’-TACCGACCGGGAAAT-3’
Antisense/Komplementer 3’-ATGGCTGGCCCTTTA-5’
mRNA 3’-AUGGCUGGCCCUUUA-5’
2. Translasi dan Sintesis. mRNA yang sudah terbentuk keluar dari anak inti sel menuju rRNA. Disana mRNA masuk ke rRNA diikuti oleh tRNA. Ketika antikodon pada tRNA cocok dengan kodon mRNA kemudian rantai bergeser ke tengah. Kodon mRNA berikutnya dicocokkan dengan tRNA kemudian asam amino yang pertama berikatan dengan asam amino kedua. tRNA pertama keluar dari rRNA. Proses ini berlangsung hingga kodon stop, ribosom subunit besar dan kecil terpisah, mRNA dan tRNA keluar dari ribosom.
mRNA 3’-AUGGCUGGCCCUUUA-5’
tRNA 5’-UACCGACCGGGAAAU-3’
KODE GENETIK
Protein yang terbentuk dalam sintesis protein mengikuti kode genetik berdasarkan kode genetik mRNA(kodon). Kode genetik itu berbentuk triplet sehingga terjadi kelimpahan kode untuk protein. 1 protein bisa mempunyai lebih dari 1 triplet genetik. Yang perlu diingat adalah triplet untuk kodon start(awal) untuk sintesis protesin dan stop untuk menghentikan proses sintesis protein.
Kodon start: AUG, proteinnya methionine
Kodon stop : UAA,UAG, UGA
Huruf Kedua
Huruf pertama U C A G Huruf Ketiga
U UUU Phe UCU Se UAU Tyr UGU Cys U
UUC UCC UAC UGC C
UUA Leu UCA UAA Stop UGA Stop A
UUG UCG UAG Stop UGG Trp G
C CUU Leu CCU Pro CAU His CGU Arg U
CUC CCC CAC CGC C
CU CCA CAA Gln CGA A
CUG CCG CAG CGG G
A AUU Ile ACU Thr AAU Asn AGU Ser U
AUC ACC AAC AGC C
AUA ACA AAA Lys AGA Arg A
AUG Met ACG AAG AGG G
G GUU Val GCU Ala GAU Asp GGU Gly U
GUC GCC GAC GGC C
GUA GCA GAA Glu GGA A
GUG GCG GAG GGG G
Rumus cepat:mRNA=DNA komplementer=DNA antisense=kode protein
tRNA=DNA template=DNA sense=kodogen
Dari DNA ke RNA, T diganti menjadi U.
Visit My Blogs
Selasa, 23 September 2008
ANABOLISME : FOTOSINTESIS
Fotosintesis terjadi di berbagai variasi organisme dan dalam bentuk berbeda, termsuk fotosintasis yang menghasilkan oksigen(oksigenik) dan tidak menghasilkan oksigen(anoksigenik). Fotosintesis anoksigenik biasanya terjadi di 4 kelompok bakteri yang berbeda: bakteri ungu, bakteri hijau sulfur, bakteri hijau non-sulfur dan heliobakteri. Fotosintesis oksigenik terjadi pada cyanobacteria, 7 kelompok alga dan semua tumbuhan daratan. Fotosintesis oksigenik dan anoksigenik mempunyai pigmen yang sama yang digunakan untuk menangkap energi cahaya, namun penyusunan dan kerja pigemn ini berbeda.
Fotosintesis terdiri dari 3 tahap yaitu menangkap energi dari cahaya matahari, menggunakan energi untuk membuat ATP dan NADPH dan menggunakan ATP dan NADPH untuk membuat senyawa organik dari CO2.
Fotosintesis terjadi di kloroplast. Membran dalam kloropas, membran tilakoid ada penerusan dari lapisan fosfolipid bilayer yang diatur menjadi kantung-kantung pipih yang ditumpuk jadi satu. Struktur tumpukan ini dinamakan grana. Stroma adalah lingka=ungan di sekitar tilakoid berisi cairan semi-liquid. Grana dan membran tilakoid mengandung klorofil sedangkan stroma mengandung banyak enzimuntuk reaksi pembentukan senyawa organik. Pada membran tilakoid, pigmen fotosintesis dijajarkan bersama membentuk fotosistem.
Fotosintesis terbagi atas 2 reaksi yaitu reaksi terang atau reaksi bergantung cahaya dan reaksi gelap atau reaksi tidak bergantung cahaya.
Reaksi terang terjadi di grana, persisnya di membran tilakoid. Reaksi terang menggunakan 2 fotosistem yang berhubungan. Fotosistem I menyerap cahaya dengan panjang gelombang 700 nm maka disebut P700, berfungsi untuk menghasilkan NADPH. Fotosistem II menyerap cahaya dengan panjang gelombang 680 nm maka disebut P680, berfungsi untuk membuat potensial oksidasi cukup tinggi sehingga bisa memecah air. Bila bekerja bersama, 2 fotosistem ini melakukan proses fotofosforilasi non-siklik yang menghasilkan ATP dan NADPH. Fotosistem I mentransfer elektron ke NADP+ untuk membentuk NADPH. Kehilangan elektron digantikan oleh elektron dari fotosistem II. Fotosistem II dengan potensial oksidasinya yang tinggi dapat memecah air untuk menggantikan elektron yang ditransfer ke fotosistem I. Kedua fotosistem ini dihubungkan oleh kompleks pembawa elektron yang disebut sitokrom/komplek b6-f. Kompleks ini menggunakan energi dari pemindahan elektron untuk memindahakan proton dan mengaktifkan gradien proton yang digunakan oleh enzim ATP sintase.
Saat pusat reaksi Fotosistem II menyerap foton, elektron tereksitasi pada molekul klorofil P680, yang mentransfer elektron ini ke akseptor elektron. P680 teroksidasi melepaskan elektron dari kulit terluar atom Mg. Atom Mg yang teroksidasi dengan bantuan enzim pemecah air, melepaskan elektron dari atom oksigen dari 2 molekul air. Proses ini membuat P680 menyerap 4 foton untuk melengkapi oksidasi 2 molekul air dan mengahsilkan 1 oksigen. Elektron yang tereksitasi dibawa oleh plastoquinon dan kemudian diterima oleh kompleks b6-f. Kehadiran elektron menyebabkan kompleks memompa proton ke celah tilakoid, kemudian elektron dibawa oleh plastosianin ke fotosistem I.
Pusat reaksi fotosistem I menyerap foton maka elektronnya tereksitasi. ”Lobang” yang ditinggal elektron segera ditempatin olek elektron dari Fotosistem II, sedangkan elektron yang tereksitasi tersebut ditanggap oleh ferredoxin. Ferredoxin tereduksi membawa elektron dengan potensial yang tinggi kemudian ditangkap oleh NADP+ untuk membentuk NADPH.Reaksi ini dikatalisasi oleh enzim NADPH reduktase.
Enzim ATP sintase menggunakan gradien proton yang tercipta saat tranpor elektron untuk mensintesis ATP dari ADP + Pi.
Reaksi gelap adalah reaksi pembentukan gula dari CO2 yang terjadi di stroma. Berbeda dengan reaksi terang, reaksi gelap atau reaksi tidak bergantung cahaya bisa terjadi pada saat siang dan malam, namun pada siang hari laju reaksi gelap tentu lebih rendah dari laju reaksi terang.
Reaksi gelap dimulai dengan pengikatan atau fiksasi 6 molekul CO2 ke 6 molekuk gula 5 karbon yaitu ribulosa 1,5 bifosfat, dikatalisis oleh enzim ribulosa bifosfat karboksilase/oksigenase(rubisco) yang kemudian membentuk 6 molekul gula 6 karbon. Molekul 6 karbon ini tidak stabil maka pecah menjadi 12 molekul 3 karbon yaitu 3 fosfogliserat. 3 fosfogliserat kemudian difosforilasi oleh 12 ATP membentuk 1,3 bifosfogliserat. 1,3 bifosfogliserat difosforilasi lagi oleh 12 NADPH membentuk 12 molekul gliseradehida 3 fosfat/PGAL. 2 PGAL digunakan untuk membentuk 1 molekul glukosa atau jenis gula lainnya, sedangkan 10 molekul lainnya difosforilasi oleh 6 ATP untuk kembali membentuk 6 molekul Ribulosa 1,5 bifosfat. Proses pengikatan CO2 ke RuBP disebut fiksasi, proses pemecahan molekul 6 karbon menjadi molekul 3 karbon disebut reduksi dan proses pembentukan kembali RuBP dari PGAL disebut regenerasi.
Fotosintesis ini disebut mekanisme C3, karena molekul yang pertama kali terbentuk setelah fiksasi karbon adalah molekul berkarbon 3. Kebanyakan tumbuhan menggunakan fotosintesis C3 disebut tumbuhan C3.
Untuk beberapa tumbuhan, mereka terpaksa melakukan fotosintesis dengan cara yang sedikit berbeda karena kondisi lingkungan. RuBP, alih-alih mengikat CO2, justru mengikat O2 sehingga berubah menjadi glikolat dan terurai. Proses ini disebut fotorespirasi. Saat fiksasi karbon, CO2 dan O2 berkompetisi untuk berikatan dengan RuBP. Pada kondisi normal bersuhu 25 C, 20% fiksasi karbon untuk fotosintesis hilang karena fotorespirasi. Kemungkinan makin meningkat saat kondisi panas, kering dan stomata menutup di siang hari untuk menyimpan air. Kondisi ini menyebabkan CO2 tidak bisa masuk dan O2 tidak bisa keluar sehingga terjadi fotorespirasi. Untuk menanggulangi hal tersebut, maka tanaman mengikatkan CO2 ke fosfoenolpiruvat(PEP), dikatalisis oleh PEP karboksilase dan membentuk senyawa 4 karbon, biasanya oksaloasetat. Mekanisme ini disebut mekanisme C4. Pengikatan ini terjadi disel mesofil. Oksaloasetat kemudian berubah menhadi malat yang memasuki sel seludang dan disanalah malat melepaskan CO2 untuk memulai siklus Calvin. Mala berubah menjadi piruvat yang keluar menuju sel mesofil, berubah menjadi PEP untuk berikatan lagi dengan CO2. Contoh tumbuhan C4 yaitu jagung.
Mekanisme fotosintesis lainnya yaitu CAM (Crassulacean Acid Metabolism). Tumbuhan CAM melakukan persis sama yang dilakukan tumbuhan C4 namun peristiwanya terjadi di sel mesofil dan fiksasi CO2 menggunakan PEP di malam hari dan sikuls Calvin terjadi di siang hari.
Fotosintesis terdiri dari 3 tahap yaitu menangkap energi dari cahaya matahari, menggunakan energi untuk membuat ATP dan NADPH dan menggunakan ATP dan NADPH untuk membuat senyawa organik dari CO2.
Fotosintesis terjadi di kloroplast. Membran dalam kloropas, membran tilakoid ada penerusan dari lapisan fosfolipid bilayer yang diatur menjadi kantung-kantung pipih yang ditumpuk jadi satu. Struktur tumpukan ini dinamakan grana. Stroma adalah lingka=ungan di sekitar tilakoid berisi cairan semi-liquid. Grana dan membran tilakoid mengandung klorofil sedangkan stroma mengandung banyak enzimuntuk reaksi pembentukan senyawa organik. Pada membran tilakoid, pigmen fotosintesis dijajarkan bersama membentuk fotosistem.
Fotosintesis terbagi atas 2 reaksi yaitu reaksi terang atau reaksi bergantung cahaya dan reaksi gelap atau reaksi tidak bergantung cahaya.
Reaksi terang terjadi di grana, persisnya di membran tilakoid. Reaksi terang menggunakan 2 fotosistem yang berhubungan. Fotosistem I menyerap cahaya dengan panjang gelombang 700 nm maka disebut P700, berfungsi untuk menghasilkan NADPH. Fotosistem II menyerap cahaya dengan panjang gelombang 680 nm maka disebut P680, berfungsi untuk membuat potensial oksidasi cukup tinggi sehingga bisa memecah air. Bila bekerja bersama, 2 fotosistem ini melakukan proses fotofosforilasi non-siklik yang menghasilkan ATP dan NADPH. Fotosistem I mentransfer elektron ke NADP+ untuk membentuk NADPH. Kehilangan elektron digantikan oleh elektron dari fotosistem II. Fotosistem II dengan potensial oksidasinya yang tinggi dapat memecah air untuk menggantikan elektron yang ditransfer ke fotosistem I. Kedua fotosistem ini dihubungkan oleh kompleks pembawa elektron yang disebut sitokrom/komplek b6-f. Kompleks ini menggunakan energi dari pemindahan elektron untuk memindahakan proton dan mengaktifkan gradien proton yang digunakan oleh enzim ATP sintase.
Saat pusat reaksi Fotosistem II menyerap foton, elektron tereksitasi pada molekul klorofil P680, yang mentransfer elektron ini ke akseptor elektron. P680 teroksidasi melepaskan elektron dari kulit terluar atom Mg. Atom Mg yang teroksidasi dengan bantuan enzim pemecah air, melepaskan elektron dari atom oksigen dari 2 molekul air. Proses ini membuat P680 menyerap 4 foton untuk melengkapi oksidasi 2 molekul air dan mengahsilkan 1 oksigen. Elektron yang tereksitasi dibawa oleh plastoquinon dan kemudian diterima oleh kompleks b6-f. Kehadiran elektron menyebabkan kompleks memompa proton ke celah tilakoid, kemudian elektron dibawa oleh plastosianin ke fotosistem I.
Pusat reaksi fotosistem I menyerap foton maka elektronnya tereksitasi. ”Lobang” yang ditinggal elektron segera ditempatin olek elektron dari Fotosistem II, sedangkan elektron yang tereksitasi tersebut ditanggap oleh ferredoxin. Ferredoxin tereduksi membawa elektron dengan potensial yang tinggi kemudian ditangkap oleh NADP+ untuk membentuk NADPH.Reaksi ini dikatalisasi oleh enzim NADPH reduktase.
Enzim ATP sintase menggunakan gradien proton yang tercipta saat tranpor elektron untuk mensintesis ATP dari ADP + Pi.
Reaksi gelap adalah reaksi pembentukan gula dari CO2 yang terjadi di stroma. Berbeda dengan reaksi terang, reaksi gelap atau reaksi tidak bergantung cahaya bisa terjadi pada saat siang dan malam, namun pada siang hari laju reaksi gelap tentu lebih rendah dari laju reaksi terang.
Reaksi gelap dimulai dengan pengikatan atau fiksasi 6 molekul CO2 ke 6 molekuk gula 5 karbon yaitu ribulosa 1,5 bifosfat, dikatalisis oleh enzim ribulosa bifosfat karboksilase/oksigenase(rubisco) yang kemudian membentuk 6 molekul gula 6 karbon. Molekul 6 karbon ini tidak stabil maka pecah menjadi 12 molekul 3 karbon yaitu 3 fosfogliserat. 3 fosfogliserat kemudian difosforilasi oleh 12 ATP membentuk 1,3 bifosfogliserat. 1,3 bifosfogliserat difosforilasi lagi oleh 12 NADPH membentuk 12 molekul gliseradehida 3 fosfat/PGAL. 2 PGAL digunakan untuk membentuk 1 molekul glukosa atau jenis gula lainnya, sedangkan 10 molekul lainnya difosforilasi oleh 6 ATP untuk kembali membentuk 6 molekul Ribulosa 1,5 bifosfat. Proses pengikatan CO2 ke RuBP disebut fiksasi, proses pemecahan molekul 6 karbon menjadi molekul 3 karbon disebut reduksi dan proses pembentukan kembali RuBP dari PGAL disebut regenerasi.
Fotosintesis ini disebut mekanisme C3, karena molekul yang pertama kali terbentuk setelah fiksasi karbon adalah molekul berkarbon 3. Kebanyakan tumbuhan menggunakan fotosintesis C3 disebut tumbuhan C3.
Untuk beberapa tumbuhan, mereka terpaksa melakukan fotosintesis dengan cara yang sedikit berbeda karena kondisi lingkungan. RuBP, alih-alih mengikat CO2, justru mengikat O2 sehingga berubah menjadi glikolat dan terurai. Proses ini disebut fotorespirasi. Saat fiksasi karbon, CO2 dan O2 berkompetisi untuk berikatan dengan RuBP. Pada kondisi normal bersuhu 25 C, 20% fiksasi karbon untuk fotosintesis hilang karena fotorespirasi. Kemungkinan makin meningkat saat kondisi panas, kering dan stomata menutup di siang hari untuk menyimpan air. Kondisi ini menyebabkan CO2 tidak bisa masuk dan O2 tidak bisa keluar sehingga terjadi fotorespirasi. Untuk menanggulangi hal tersebut, maka tanaman mengikatkan CO2 ke fosfoenolpiruvat(PEP), dikatalisis oleh PEP karboksilase dan membentuk senyawa 4 karbon, biasanya oksaloasetat. Mekanisme ini disebut mekanisme C4. Pengikatan ini terjadi disel mesofil. Oksaloasetat kemudian berubah menhadi malat yang memasuki sel seludang dan disanalah malat melepaskan CO2 untuk memulai siklus Calvin. Mala berubah menjadi piruvat yang keluar menuju sel mesofil, berubah menjadi PEP untuk berikatan lagi dengan CO2. Contoh tumbuhan C4 yaitu jagung.
Mekanisme fotosintesis lainnya yaitu CAM (Crassulacean Acid Metabolism). Tumbuhan CAM melakukan persis sama yang dilakukan tumbuhan C4 namun peristiwanya terjadi di sel mesofil dan fiksasi CO2 menggunakan PEP di malam hari dan sikuls Calvin terjadi di siang hari.
METABOLISME SEL:KATABOLISME
METABOLISME SEL:KATABOLISME
Berbagai reaksi kimia yang berlangsung dalam tubuh makhluk hidup untuk mempertahankan hidup disebut metabolisme.
Metabolisme terbagi menjadi 2 bagian, yaitu anabolisme dan katabolisme. Anabolisme adalah reaksi kimia yang memerlukan energi untuk membentuk senyawa kompleks dari senyawa sederhana. Katabolisme adalah reaksi kimia yang menghasilkan energi dengan memecah senyawa kompleks menjadi senyawa sederhana.
Dalam tubuh organisme, terdapat ribuan proses kimia yang berlangsung melibatkjan ribuan enzim. Karena itu, produk suatu enzim bisa menjadi substrat bagi enzim lainnya. Semua reaksi kimia dalam organisme hidup diatur dengan mengatur kerja katalisator.
ENZIM
Enzim merupakan pemercepat laju reaksi kimia tanpa ikut bereaksi didalamnya, atau disebut juga katalisator. Karena enzim terdapat di dalam organisme hidup maka enzim disebut biokatalisator. Enzim bekerja spesifik(hanya dapat mengikat 1 jenis substrat) dan diperlukan dalam jumlah sedikit.
Sebagian besar enzim terdiri dari protein globular(apoenzim) dengan 1 atau lebih celah yang disebut sisi aktif pada permukaannya. Substrat menempel pada sisi aktif enzim dan membentuk kompleks enzim-substrat. Disini energi aktivasi untuk memutuskan ikatan kimia atau membentuk ikatan kimia baru substrat diturunkan. Setelah proses selesai, substrat sudah menjadi produk dan segera lepas enzim, sehingga enzim dapat bekerja mengikat substrat lagi.
Enzim bekerja secara reversible dan berulang-ulang. Dengan kata lain, suatu enzim dapat merubah substrat menjadi produk dan produk kembali menjadi substrat. Enzim bekerja mengikat substrat baru setelah produk dihasilkan sampai kebutuhan akan produk sudah terpenuhi.
Kerja katalis enzim dipengaruhi oleh konsentrasi substrat dan enzim yang bekerja itu sendiri. Apapun yang mempengaruhi enzim dapat merubah struktur 3 dimensinya dan kemampuannya untuk mengikat substra. Faktor-faktor yang mempengaruhi kerja enzim:
1. Suhu. Menaikkan suhu pada reaksi yang tidak dikatalisasi dapat meningkatkan laju reaksi kimianya karena tambahan energi meningkatkan pergerakan molekul. Laju reaksi terkatalisasi-enzim juga ditingkatkan oleh suhu, tapi hanya mencapai titik yang disebut suhu optimum. Dibawah suhu ini, ikatan hidrogen dan interaksi hidrofobik yang menentukan bentuk enzim tidak cukup fleksibel untuk mengizinkan pengikatan optimal untuk katlis. Di bawah suhu, gaya ini terlalu lemah untuk menahan bentuk enzim melawan kenaikan pergerakan acak atom-atom pada enzim. Pada suhu yang lebih tinggi, enzim terdenaturasi, struktur proteinnya berubah sehingga tidak bisa digunakan untuk reaksi kimia alias rusak. Namun, pada suhu yang rendah, enzim menjadi tidak aktif.
2. pH. Interaksi ionik antara residu asam amino yang berlawanan muatan, seperti asam glutamat(-) dan lisin(+), juga menyanggah enzim bersama. Interaksi ini sangat sensitif konsentrasi ion dimana biasanya enzim terlarut karena begitu konsentrasinya berubah, keseimbangan antara residu asam amino yang bermuatan positif dan negatif akan berubah. Karena itu, kebanyakan enzim bekerja pada pH optimum dari 6-8. Namun, enzim yang bekerja pada kondisi yang sangat asama, seperti pepsin, dpat mempertahankan bentuk 3 dimensional proteinnya di dalam konsentrasi tinggi ion hidrogen.
3. Penghambat (inhibitor) dan pengaktivasi (aktivator). Kerja enzim sangat sensitif terhadap kehadiran substansi yang dapat mengikat enzim dan menyebabkan bentuk enzim itu berubah. Namun, melalui substansi ini, sel dapat mengatur kapan enzim aktif dan tidak aktif pada waktu tertentu. Kemampuan ini membuat sel dapat meningkatkan efisiensi dan mengontrol perubahan karakteristik selama perkembangn. Substansi yang mengikat enzim dan menurunkan aktivitasnya disebut inhibitor(penghambat). Banyak kejadian bahwa dimana suatu produk akhir dari jalur metabolisme menjadi penghambat pada reaksi awal., proses ini disebut mekanisme penghambat. Penghambatan ini ada 2 cara: penghambat kompetitif yang melekat pada sisi aktid enzim sehingga enzim tidak dapat berikatan dengan substrat dan penghambat non-kompetitif yang berikatan pada bagian lain enzim sehingga bentuk sisi aktif enzim berubah dan tidak dapat berikatan dengan substrat. Cara yang sama digunakan untuk mengaktivasi enzim. Pengaktivasi allosterik mengikat pada bagianlain enzim(allosterik) dan membuat enzim bekerja lebih dari biasanya.
4. Kofaktor enzim. Fungsi enzim biasanya diikuti oleh suatu zat kimia yang disebut kofaktor, yang bisa berupa ion besi. Jika kofaktornya adalah molekul organik nonprotein maka disebut koenzim.
ATP
Semua transaksi kimia di dalam sel menggunakan mata uang energi yaitu nukleotidak Adenosin Trifosfat, yang memberi energi untuk setiap kegiatan sel.
ATP tersusun oleh 3 bagian yaitu gula 5 karbon yaitu ribosa, basa nitrogen purin dengan 2 cincin karbon-nitrogen, adenin dan rantai 3 fosfat.
Rahasia bagaimana ATP menyimpan energi terdapat pada grup trifosfatnya. Grup fosfat ini sangat bermuatan negatif dan mereka berikatan satu sama lain dengan kuat, namun ikatan kovalen yang menggabungkan fosfat tidak stabil. Ikatan yang tidak stabil ini membuat fosfta di dalam ATP punya energi aktivasi yang rendah dan mudah putus akibat hidrolisis. Saat putus, mereka mengluarkan jumlah energi yang besar. Dengan kata lain, hidrolisis ATP mempnuyai ∆G negatif dan energi yang dikeluarkan dapat digunakan untuk aktivitas.
Dalam sebagian reaksi yang melibatkan ATP, hanya ikatan fosfat berenergi tinggi paling luar saja yang dihidrolisis, memisahkan grup fosfat yang paling akhir. Saat ini terjadi, ATP menjadi Adenoisin Difosfat(ADP) ditambah 1 fosfat anorganik(Pi). 2 terminal gugus fofat paling luar bisa dihidrolisis sehingga tersisa Adenosin Monofosfat(AMP), namun gugus fosfat yang terakhir ini tidak berenergi tinggi.
KATABOLISME : RESPIRASI SELULER
Tumbuhan, alga dan beberapa bakteri mengambil energi dari sinar matahari melalui fotosintesis, merubah energi cahaya menjadi energi kimia, untuk digunakan membuat makanan disebut organisme autotrof.. Sebaliknya, oprganisme yang hidup dari hasil produksi organisme autotrof atau tidak bisa membuat makan sendiri disebut organisme heterotrof. Organisme heterotrog memecah makanan mereka menjadi energi. Proses oksidasi senyawa organik untuk mendapat energi dari pemutusan ikatan kimia pada tingkatan sel disebut respirasi seluler. Ada 2 macam respirasi yaitu respirasi aerob dan respirasi anaerob.
RESPIRASI AEROB
Proses repirasi disebut aerob karena dibutuhkan oksigen sebagai akseptor elektron, selain itu disebut respirasi anaerob atau fermentasi. Respirasi aerob terdapat 4 tahap utama yaitu Glikolisis, Dekarboksilasi Oksidatif, Siklus Krebs dan Transpor Elektron.
Glikolisis adalah 10 tahap pertama biokimia yang menghasilkan ATP pada fosforilasi tingakt substrat. Untuk 1 molekul glukosa, 2 ATP digunakan pada 3 tahap pertama dan 4 ATP dihasilkan pada 4 tahap terakhir. Hasil kotor glikolisis yaitu 2 molekul asam piruvat(3C), 2 ATP, 2 NADH dan 2 H2O. Glikolisis terjadi di sitosol/sitoplasma dan bisa dianggap proses anaerob karena belum menggunakan oksigen. Ringkasan tahapan glikolisis:
• Fosforilasi glukosa oleh ATP
• Penyusunan kembali struktur glukosa yang terfosforilasi, diikuti oleh fosforilasi kedua.
• Molekul glukosa(6C) akhirnya pecah menjadi 2 senyawa 3 karbon berlainan yaitu Glyceraldehyde 3 phosphate (G3P atau PGAL) dan satunya lagi yaitu Dihydroxylacetone phosphate (DHAP). DHAP segera diubah menjadi PGAL oleh enzim isomerase. (Proses perubahan ini mencapai kesetimbangan di dalam tabung reaksi namun hal ini tidak terjadi di dalam tubuh makhluk hidup)
• Oksidasi yang diikuti oleh fosforilasi dari fosfat anorganik(bukan dari ATP) menghasilkan 2 NADH dan 2 molekul difosfogliserat(BPG/PGA), masing-masing dengan 1 ikatan fosfat berenergi tinggi
• Pelepasan ikatan berenergi tinggi dengan 2 ADP menghasilkan 2 ATP dan meninggalkan 2 molekul fosfogliserat(PGA)
• Pelepasan air menyebabkan 2 molekul fosfoenolpiruvat dengan ikatan fosfat energi tinggi
• Pelepasan fosfat energi tinggi oleh 2 ADP menghasilkan 2 ATP dan hasil akhir glikolisis yaitu 2 molekul asam piruvat.
Enzim-enzim dalam proses glikolisis yaitu:
-Heksokinase: Fosforilasi glukosa oleh ATP sehingga menghasilkan glukosa 6 fosfat
-Fosfoglukoisomerase: Penyusunan molekul glukosa terfosforilasi menjadi fruktosa terfosforilasi(fruktosa 6 fosfat)
-Fosfofruktokinase: Fosforilasi fruktosa 6 fosfat oleh ATP sehingga menghasilkan Fruktosa 1,6 Difosfat
-Aldolase:Memecah fruktosa 1,6 difosfat menjadi dihidroksilaseton fosfat dan gliseraldehida 3 fosfat
-Isomerase:Mengubah semua dihidroksilaseton fosfat menjadi gliseraldehida 3 fosfat
-Gliseraldehida 3 fosfat dehidrogenase atau triosa fosfat dehidrogenase: Fosforilasi Gliseraldehida 3 fosfat oleh fosfat anorganik dari sitosol, oksidasi untuk membentuk NADH sehingga menghasilkan 1,3 difosfogliserat
-Fosfogliserokinase: Pelepasan gugus fosfat untuk membentuk ATP sehingga menghasilkan 3 fosfogliserat
-Fosfogliseromutase: Merubah 3 fosfogliserat menjadi 2 fosfogliserat
-Enolase Menghasilkan air sehingga terbentuk fosfoenolpiruvat
-Piruvat kinase Pelepasan gugus fosfat untuk membentuk ATP sehingga hasil akhir berupa asam piruvat
Dekarboksilasi oksidatif adalah tahap kedua dimana 2 molekul asam piruvat yang dihasilkan dari 1 molekul glukosa dirubah menjadi senyawa berkarbon 2 yaitu asetil CoA(asetil koenzim A) dengan melepaskan 2 CO2 dan 2 NADH. Dekarboksilasi oksidatif terjadi di dalam membran luar mitokondria. Enzim yang berperan adalah CoA dan piruvat dehirogenase yang berfungsi mereduksi piruvat sehingga melepaskan Co2 dan NADH serta berikatan dengan piruvat tereduksi(asetil) untuk dibawa ke mitokondria.
Siklus Krebs adalah tahap ketiga dengan 9 reaksi dimana gugus asetil dari piruvat dioksidasi sehingga menghasilkan NADH, FADH, ATP dan CO2. Siklus ini dinamakan siklus Krebs karena ditemukan oleh Hans Krebs. Siklus Krebs bisa disbut juga siklus asam sitrat karena senyawa yang pertama kali terbentuk adalah asam sitrat. Siklus Krebs terjadi di matriks mitokondria dan ringkasan tahapannya sebagai berikut:
• Asetil CoA ditambah Oksaloasetat menghasilkan molekul sitrat yang berkarbon 6.
• Penyusunan kembali molekul sitrat dan dekarboksilasi. 5 reaksi berikutnya menyederhanakan sitrat ke molekul 5 karbon dan kemudian ke molekul 4 karbon yaitu suksinat. Selama reaksi ini berlangsung, dihasilkan 2 NADH dan 1 ATP.
• Regenerasi oksaloasetat. Suksinat melewati 3 reaksi tambahan untuk menjadi oksaloasetat. Selama proses ini, dihasilkan 1 NADH dan 2 FADH.
Enzim-enzim yang digunakan:
-Sitrat sintetase: Membentuk sitrat dari oksaloasetat dan asetil CoA. Kerja enzim ini irreversible dan terhambat saat konsentrasi ATP tinggi dan dipicu ketika konsentrasi ATP rendah
-Akonitase: Penyusunan kembali molekul sitrat dengan memindahkan gugus H dan OH pada karbon berlainan, membentuk isositrat
-Isositrat dehidrogenase: Mengoksidasi isositrat sehingga dihasilkan NADH dan CO2, sehingga isositrat berubah menjadi molekul 5 karbon, α ketoglutarat
-α ketoglutarat dehidrogenase: Mengoksidasi α ketoglutarat membentuk gugus suksinil yang bersatu dengan Coa sehingga terbentuk suksinil CoA
-Suksinil KoA sintetase: Pelepasan ikatan antara gugus suksinil dan KoA untuk dijadikan ATP sehingga molekul tersisa menjadi Suksinat
-Suksinat dehidrogenase: Mengoksidasi suksinat menjadi fumarat dan menghasilkan FADH
-Fumarase: Menambahkan air ke fumarat untuk membentuk malat
-Malat dehidrogenase: Mengoksidasi malat dan melepaskan NADH sehingga terbentuk kembali oksaloasetat
Rantai transport elektron adalah proses terakhir untuk mengahsilkan ATP, H2O yang terjadi di membran dalam/krista mitokondria. Pada tahap ini, elektron yang dibawa oleh NADH ditransfer ke berbagai pembawa elektron supaya energinya bisa digunakan untuk memompa proton. Gradien proton yang dibuat oleh transpor elektron digunakan oleh enzim ATP sintase untuk menghasilkan ATP. Proses pemompaan proton untuk menghasilkan ATP juga disebut kemiosmosis.
Enzim-enzim yang terlibat anatara lain NADH dehidrogenase (melepaskan ion H dari NAD dan mengoper elektron ke ubiquinon), ubiquinon (mengoper elektron ke komplek protein sitrokrom), kompleks bc1 (memompa proton dan mengoper elektron ke sitrokrom c), sitokrom c (mereduksi oksigen dengan 4 elektron membentuk air), ATP sintase (memompa proton untuk menghasilkan ATP).
Hasil akhir respirasi seluler:
1. Glikolisis, hasil 2 ATP, 2 piruvat, 2 NADH, 2 H2O
2. Dekarboksilasi oksidatif, hasil 2 NADH, 2 CO2
3. Siklus Krebs, hasil 6 HADH, 2 FADH, 4 CO2, 2 ATP
4. Transpor elektron, hasil 34 ATP, H2O.
Jumlah bersih ATP : 38 ATP(36 ATP karena 2 ATP dipakai untuk memasukkan NADH ke mitokondria, 30 ATP karena membran mitokondria agak bocor sehingga proton bisa lewat tanpa melalui ATP sintase dan mitokondria terkadang memakai gradien proton untuk keperluan lain seperti memasukkan piruvat ke matriks daripada sintesis ATP).
RESPIRASI ANAEROB
Jika tak ada oksigen, sel tidak memliki akseptor elektron alternatif untuk memproduksi ATP, sehingga terpaksa elektron yang didapatkan dari glikolisis diangkut oleh senyawa organik, proses ini disebut fermentasi.
Fermentasi alkohol dilakukan oleh ragi dengan cara melepaskan gugus Co2 dari piruvat melalui dekarboksilasi dan menghasilkan molekul 2 karbon, asetaldehida. Asetaldehida kemudia menerima elektron dari NADH sehingga berubah menjadi etanol. Fermentasi alkohol dilakukan oleh tumbuhan.
Fermentasi asam laktat dilakukan oleh sel hewan dengan cara mentransfer elektron dari NADH kembali ke piruvat sehingga dihasilkan asam laktat yang menyebabkan pegal-pegal.
Berbagai reaksi kimia yang berlangsung dalam tubuh makhluk hidup untuk mempertahankan hidup disebut metabolisme.
Metabolisme terbagi menjadi 2 bagian, yaitu anabolisme dan katabolisme. Anabolisme adalah reaksi kimia yang memerlukan energi untuk membentuk senyawa kompleks dari senyawa sederhana. Katabolisme adalah reaksi kimia yang menghasilkan energi dengan memecah senyawa kompleks menjadi senyawa sederhana.
Dalam tubuh organisme, terdapat ribuan proses kimia yang berlangsung melibatkjan ribuan enzim. Karena itu, produk suatu enzim bisa menjadi substrat bagi enzim lainnya. Semua reaksi kimia dalam organisme hidup diatur dengan mengatur kerja katalisator.
ENZIM
Enzim merupakan pemercepat laju reaksi kimia tanpa ikut bereaksi didalamnya, atau disebut juga katalisator. Karena enzim terdapat di dalam organisme hidup maka enzim disebut biokatalisator. Enzim bekerja spesifik(hanya dapat mengikat 1 jenis substrat) dan diperlukan dalam jumlah sedikit.
Sebagian besar enzim terdiri dari protein globular(apoenzim) dengan 1 atau lebih celah yang disebut sisi aktif pada permukaannya. Substrat menempel pada sisi aktif enzim dan membentuk kompleks enzim-substrat. Disini energi aktivasi untuk memutuskan ikatan kimia atau membentuk ikatan kimia baru substrat diturunkan. Setelah proses selesai, substrat sudah menjadi produk dan segera lepas enzim, sehingga enzim dapat bekerja mengikat substrat lagi.
Enzim bekerja secara reversible dan berulang-ulang. Dengan kata lain, suatu enzim dapat merubah substrat menjadi produk dan produk kembali menjadi substrat. Enzim bekerja mengikat substrat baru setelah produk dihasilkan sampai kebutuhan akan produk sudah terpenuhi.
Kerja katalis enzim dipengaruhi oleh konsentrasi substrat dan enzim yang bekerja itu sendiri. Apapun yang mempengaruhi enzim dapat merubah struktur 3 dimensinya dan kemampuannya untuk mengikat substra. Faktor-faktor yang mempengaruhi kerja enzim:
1. Suhu. Menaikkan suhu pada reaksi yang tidak dikatalisasi dapat meningkatkan laju reaksi kimianya karena tambahan energi meningkatkan pergerakan molekul. Laju reaksi terkatalisasi-enzim juga ditingkatkan oleh suhu, tapi hanya mencapai titik yang disebut suhu optimum. Dibawah suhu ini, ikatan hidrogen dan interaksi hidrofobik yang menentukan bentuk enzim tidak cukup fleksibel untuk mengizinkan pengikatan optimal untuk katlis. Di bawah suhu, gaya ini terlalu lemah untuk menahan bentuk enzim melawan kenaikan pergerakan acak atom-atom pada enzim. Pada suhu yang lebih tinggi, enzim terdenaturasi, struktur proteinnya berubah sehingga tidak bisa digunakan untuk reaksi kimia alias rusak. Namun, pada suhu yang rendah, enzim menjadi tidak aktif.
2. pH. Interaksi ionik antara residu asam amino yang berlawanan muatan, seperti asam glutamat(-) dan lisin(+), juga menyanggah enzim bersama. Interaksi ini sangat sensitif konsentrasi ion dimana biasanya enzim terlarut karena begitu konsentrasinya berubah, keseimbangan antara residu asam amino yang bermuatan positif dan negatif akan berubah. Karena itu, kebanyakan enzim bekerja pada pH optimum dari 6-8. Namun, enzim yang bekerja pada kondisi yang sangat asama, seperti pepsin, dpat mempertahankan bentuk 3 dimensional proteinnya di dalam konsentrasi tinggi ion hidrogen.
3. Penghambat (inhibitor) dan pengaktivasi (aktivator). Kerja enzim sangat sensitif terhadap kehadiran substansi yang dapat mengikat enzim dan menyebabkan bentuk enzim itu berubah. Namun, melalui substansi ini, sel dapat mengatur kapan enzim aktif dan tidak aktif pada waktu tertentu. Kemampuan ini membuat sel dapat meningkatkan efisiensi dan mengontrol perubahan karakteristik selama perkembangn. Substansi yang mengikat enzim dan menurunkan aktivitasnya disebut inhibitor(penghambat). Banyak kejadian bahwa dimana suatu produk akhir dari jalur metabolisme menjadi penghambat pada reaksi awal., proses ini disebut mekanisme penghambat. Penghambatan ini ada 2 cara: penghambat kompetitif yang melekat pada sisi aktid enzim sehingga enzim tidak dapat berikatan dengan substrat dan penghambat non-kompetitif yang berikatan pada bagian lain enzim sehingga bentuk sisi aktif enzim berubah dan tidak dapat berikatan dengan substrat. Cara yang sama digunakan untuk mengaktivasi enzim. Pengaktivasi allosterik mengikat pada bagianlain enzim(allosterik) dan membuat enzim bekerja lebih dari biasanya.
4. Kofaktor enzim. Fungsi enzim biasanya diikuti oleh suatu zat kimia yang disebut kofaktor, yang bisa berupa ion besi. Jika kofaktornya adalah molekul organik nonprotein maka disebut koenzim.
ATP
Semua transaksi kimia di dalam sel menggunakan mata uang energi yaitu nukleotidak Adenosin Trifosfat, yang memberi energi untuk setiap kegiatan sel.
ATP tersusun oleh 3 bagian yaitu gula 5 karbon yaitu ribosa, basa nitrogen purin dengan 2 cincin karbon-nitrogen, adenin dan rantai 3 fosfat.
Rahasia bagaimana ATP menyimpan energi terdapat pada grup trifosfatnya. Grup fosfat ini sangat bermuatan negatif dan mereka berikatan satu sama lain dengan kuat, namun ikatan kovalen yang menggabungkan fosfat tidak stabil. Ikatan yang tidak stabil ini membuat fosfta di dalam ATP punya energi aktivasi yang rendah dan mudah putus akibat hidrolisis. Saat putus, mereka mengluarkan jumlah energi yang besar. Dengan kata lain, hidrolisis ATP mempnuyai ∆G negatif dan energi yang dikeluarkan dapat digunakan untuk aktivitas.
Dalam sebagian reaksi yang melibatkan ATP, hanya ikatan fosfat berenergi tinggi paling luar saja yang dihidrolisis, memisahkan grup fosfat yang paling akhir. Saat ini terjadi, ATP menjadi Adenoisin Difosfat(ADP) ditambah 1 fosfat anorganik(Pi). 2 terminal gugus fofat paling luar bisa dihidrolisis sehingga tersisa Adenosin Monofosfat(AMP), namun gugus fosfat yang terakhir ini tidak berenergi tinggi.
KATABOLISME : RESPIRASI SELULER
Tumbuhan, alga dan beberapa bakteri mengambil energi dari sinar matahari melalui fotosintesis, merubah energi cahaya menjadi energi kimia, untuk digunakan membuat makanan disebut organisme autotrof.. Sebaliknya, oprganisme yang hidup dari hasil produksi organisme autotrof atau tidak bisa membuat makan sendiri disebut organisme heterotrof. Organisme heterotrog memecah makanan mereka menjadi energi. Proses oksidasi senyawa organik untuk mendapat energi dari pemutusan ikatan kimia pada tingkatan sel disebut respirasi seluler. Ada 2 macam respirasi yaitu respirasi aerob dan respirasi anaerob.
RESPIRASI AEROB
Proses repirasi disebut aerob karena dibutuhkan oksigen sebagai akseptor elektron, selain itu disebut respirasi anaerob atau fermentasi. Respirasi aerob terdapat 4 tahap utama yaitu Glikolisis, Dekarboksilasi Oksidatif, Siklus Krebs dan Transpor Elektron.
Glikolisis adalah 10 tahap pertama biokimia yang menghasilkan ATP pada fosforilasi tingakt substrat. Untuk 1 molekul glukosa, 2 ATP digunakan pada 3 tahap pertama dan 4 ATP dihasilkan pada 4 tahap terakhir. Hasil kotor glikolisis yaitu 2 molekul asam piruvat(3C), 2 ATP, 2 NADH dan 2 H2O. Glikolisis terjadi di sitosol/sitoplasma dan bisa dianggap proses anaerob karena belum menggunakan oksigen. Ringkasan tahapan glikolisis:
• Fosforilasi glukosa oleh ATP
• Penyusunan kembali struktur glukosa yang terfosforilasi, diikuti oleh fosforilasi kedua.
• Molekul glukosa(6C) akhirnya pecah menjadi 2 senyawa 3 karbon berlainan yaitu Glyceraldehyde 3 phosphate (G3P atau PGAL) dan satunya lagi yaitu Dihydroxylacetone phosphate (DHAP). DHAP segera diubah menjadi PGAL oleh enzim isomerase. (Proses perubahan ini mencapai kesetimbangan di dalam tabung reaksi namun hal ini tidak terjadi di dalam tubuh makhluk hidup)
• Oksidasi yang diikuti oleh fosforilasi dari fosfat anorganik(bukan dari ATP) menghasilkan 2 NADH dan 2 molekul difosfogliserat(BPG/PGA), masing-masing dengan 1 ikatan fosfat berenergi tinggi
• Pelepasan ikatan berenergi tinggi dengan 2 ADP menghasilkan 2 ATP dan meninggalkan 2 molekul fosfogliserat(PGA)
• Pelepasan air menyebabkan 2 molekul fosfoenolpiruvat dengan ikatan fosfat energi tinggi
• Pelepasan fosfat energi tinggi oleh 2 ADP menghasilkan 2 ATP dan hasil akhir glikolisis yaitu 2 molekul asam piruvat.
Enzim-enzim dalam proses glikolisis yaitu:
-Heksokinase: Fosforilasi glukosa oleh ATP sehingga menghasilkan glukosa 6 fosfat
-Fosfoglukoisomerase: Penyusunan molekul glukosa terfosforilasi menjadi fruktosa terfosforilasi(fruktosa 6 fosfat)
-Fosfofruktokinase: Fosforilasi fruktosa 6 fosfat oleh ATP sehingga menghasilkan Fruktosa 1,6 Difosfat
-Aldolase:Memecah fruktosa 1,6 difosfat menjadi dihidroksilaseton fosfat dan gliseraldehida 3 fosfat
-Isomerase:Mengubah semua dihidroksilaseton fosfat menjadi gliseraldehida 3 fosfat
-Gliseraldehida 3 fosfat dehidrogenase atau triosa fosfat dehidrogenase: Fosforilasi Gliseraldehida 3 fosfat oleh fosfat anorganik dari sitosol, oksidasi untuk membentuk NADH sehingga menghasilkan 1,3 difosfogliserat
-Fosfogliserokinase: Pelepasan gugus fosfat untuk membentuk ATP sehingga menghasilkan 3 fosfogliserat
-Fosfogliseromutase: Merubah 3 fosfogliserat menjadi 2 fosfogliserat
-Enolase Menghasilkan air sehingga terbentuk fosfoenolpiruvat
-Piruvat kinase Pelepasan gugus fosfat untuk membentuk ATP sehingga hasil akhir berupa asam piruvat
Dekarboksilasi oksidatif adalah tahap kedua dimana 2 molekul asam piruvat yang dihasilkan dari 1 molekul glukosa dirubah menjadi senyawa berkarbon 2 yaitu asetil CoA(asetil koenzim A) dengan melepaskan 2 CO2 dan 2 NADH. Dekarboksilasi oksidatif terjadi di dalam membran luar mitokondria. Enzim yang berperan adalah CoA dan piruvat dehirogenase yang berfungsi mereduksi piruvat sehingga melepaskan Co2 dan NADH serta berikatan dengan piruvat tereduksi(asetil) untuk dibawa ke mitokondria.
Siklus Krebs adalah tahap ketiga dengan 9 reaksi dimana gugus asetil dari piruvat dioksidasi sehingga menghasilkan NADH, FADH, ATP dan CO2. Siklus ini dinamakan siklus Krebs karena ditemukan oleh Hans Krebs. Siklus Krebs bisa disbut juga siklus asam sitrat karena senyawa yang pertama kali terbentuk adalah asam sitrat. Siklus Krebs terjadi di matriks mitokondria dan ringkasan tahapannya sebagai berikut:
• Asetil CoA ditambah Oksaloasetat menghasilkan molekul sitrat yang berkarbon 6.
• Penyusunan kembali molekul sitrat dan dekarboksilasi. 5 reaksi berikutnya menyederhanakan sitrat ke molekul 5 karbon dan kemudian ke molekul 4 karbon yaitu suksinat. Selama reaksi ini berlangsung, dihasilkan 2 NADH dan 1 ATP.
• Regenerasi oksaloasetat. Suksinat melewati 3 reaksi tambahan untuk menjadi oksaloasetat. Selama proses ini, dihasilkan 1 NADH dan 2 FADH.
Enzim-enzim yang digunakan:
-Sitrat sintetase: Membentuk sitrat dari oksaloasetat dan asetil CoA. Kerja enzim ini irreversible dan terhambat saat konsentrasi ATP tinggi dan dipicu ketika konsentrasi ATP rendah
-Akonitase: Penyusunan kembali molekul sitrat dengan memindahkan gugus H dan OH pada karbon berlainan, membentuk isositrat
-Isositrat dehidrogenase: Mengoksidasi isositrat sehingga dihasilkan NADH dan CO2, sehingga isositrat berubah menjadi molekul 5 karbon, α ketoglutarat
-α ketoglutarat dehidrogenase: Mengoksidasi α ketoglutarat membentuk gugus suksinil yang bersatu dengan Coa sehingga terbentuk suksinil CoA
-Suksinil KoA sintetase: Pelepasan ikatan antara gugus suksinil dan KoA untuk dijadikan ATP sehingga molekul tersisa menjadi Suksinat
-Suksinat dehidrogenase: Mengoksidasi suksinat menjadi fumarat dan menghasilkan FADH
-Fumarase: Menambahkan air ke fumarat untuk membentuk malat
-Malat dehidrogenase: Mengoksidasi malat dan melepaskan NADH sehingga terbentuk kembali oksaloasetat
Rantai transport elektron adalah proses terakhir untuk mengahsilkan ATP, H2O yang terjadi di membran dalam/krista mitokondria. Pada tahap ini, elektron yang dibawa oleh NADH ditransfer ke berbagai pembawa elektron supaya energinya bisa digunakan untuk memompa proton. Gradien proton yang dibuat oleh transpor elektron digunakan oleh enzim ATP sintase untuk menghasilkan ATP. Proses pemompaan proton untuk menghasilkan ATP juga disebut kemiosmosis.
Enzim-enzim yang terlibat anatara lain NADH dehidrogenase (melepaskan ion H dari NAD dan mengoper elektron ke ubiquinon), ubiquinon (mengoper elektron ke komplek protein sitrokrom), kompleks bc1 (memompa proton dan mengoper elektron ke sitrokrom c), sitokrom c (mereduksi oksigen dengan 4 elektron membentuk air), ATP sintase (memompa proton untuk menghasilkan ATP).
Hasil akhir respirasi seluler:
1. Glikolisis, hasil 2 ATP, 2 piruvat, 2 NADH, 2 H2O
2. Dekarboksilasi oksidatif, hasil 2 NADH, 2 CO2
3. Siklus Krebs, hasil 6 HADH, 2 FADH, 4 CO2, 2 ATP
4. Transpor elektron, hasil 34 ATP, H2O.
Jumlah bersih ATP : 38 ATP(36 ATP karena 2 ATP dipakai untuk memasukkan NADH ke mitokondria, 30 ATP karena membran mitokondria agak bocor sehingga proton bisa lewat tanpa melalui ATP sintase dan mitokondria terkadang memakai gradien proton untuk keperluan lain seperti memasukkan piruvat ke matriks daripada sintesis ATP).
RESPIRASI ANAEROB
Jika tak ada oksigen, sel tidak memliki akseptor elektron alternatif untuk memproduksi ATP, sehingga terpaksa elektron yang didapatkan dari glikolisis diangkut oleh senyawa organik, proses ini disebut fermentasi.
Fermentasi alkohol dilakukan oleh ragi dengan cara melepaskan gugus Co2 dari piruvat melalui dekarboksilasi dan menghasilkan molekul 2 karbon, asetaldehida. Asetaldehida kemudia menerima elektron dari NADH sehingga berubah menjadi etanol. Fermentasi alkohol dilakukan oleh tumbuhan.
Fermentasi asam laktat dilakukan oleh sel hewan dengan cara mentransfer elektron dari NADH kembali ke piruvat sehingga dihasilkan asam laktat yang menyebabkan pegal-pegal.
Langganan:
Postingan (Atom)