Facebook Badget

Yanty Agustina's Facebook profile

Minggu, 27 Januari 2008

Burung-Burung Rantau-The WeaverBirds by Y.B. Mangunwijaya

Novel berjudul Burung-Burung Rantau karangan Y.B. Mangunwijaya bersetting di Indonesia dan Yunani pasca kemerdekaan Indonesia atau lebih tepatnya, Indonesia dan Yunani zaman modern.

Neti adalah seorang wanita yang energik dan bebas. Sebagai sarjana antropologi,ia mempunyai jiwa sosiawati yang tinggi. Waalaupun begitu,ia tidak mudah dipengaruhi oleh orang lain. Dengan ibunya, Yuniarti, Neti menjadi gadis nakal yang tidak paham akan paham tradisionalis yang dianut ibunya. Dalam masalah pakaian dan selera saja, mereka berselisih paham, sehingga Neti menganggap ibunya sebagai wanita cantik yang tidak peka humor. Ayahnya, Wiranto, jauh lebih terbuka dan demokratis. Keduanya punya pendapat sendiri akan kematian Edi, adik bungsu Neti. Wiranto merasa bahwa sikapnya yang konon terlalu keras pada Edi menyebabkan Edi terjerumus dalam pergaulan yang salah. Neti sendiri menganggap dirinyalah yang paling dekat dengan Edi. Namun, karena terlalu banyak kasih sayang dan cinta yang diberikan Neti pada Edi, Edi seakan berkepribadian lemah. Ia terpengaruhi oleh paham Karl Marx dan terjerumus oleh pergaulan yang sesat dan narkoba oleh temen-temennya. Sedangkan kakak-kakak Neti yang lain seakan punya pandangan sendiri atas kematian Edi. Chandra, seorang pilot dirgantara Amerika dan hobi mengutak-atik mesin pesawat, terbakar oleh keinginan balas dendam kepada teman-teman Edi yang menjerumuskan Edi ke dalam pengaruh narkoba. Namun, seiring berjalannya waktu, Chandra menjadi pilot pesawat tempur yang hebat dan berpikir lebih dewasa. Ia sering mengirim kabar tentang pesawat tempur serta kondisi pekerjaannya sekarang kepada ayahnya. Anggraini merupakan wanita bisnis yang sangat sukses dan seorang janda yang kaya raya. Mengenai kematian Edi, ia hanya menanggapi dengan dingin. Masa lalu adalah masa lalu. Ia kerap kali sering berselisih dengan Neti. Anggi menganggap Neti membuang-buang waktunya dengan mengurusi orang-orang miskin sementara Neti sendiri lajang. Anggi seringkali berdebat dengan anggota keluarga lain, namun di sisi lain, Anggi merasakan kesepian. Ketika selesai berdebat dengan Neti, tanpa sadar ia melihat ruang tamu keluarganya dan terharu. Ayah, ibu dan adiknya hidup dalam kesederhanaan sementara Anggi hidup mewah. Salah seorang kakak Neti, Bowo merupakan pria dengan otak brilian, ahli fisika partikel CERN namun sangat pendiam. Bowo memilih Agatha,seorang gadis Yunani dinilai cukup kontroversial oleh Anggi. Selain itu, pesta pernikahannya diadakan di Yunani, bukan di Jakarta. Bowo menilai Jakarta yang hiruk pikuk tidak pantas untuk diadakan pesta pernikahan. Namun, Anggi justru ngotot untuk dadakannya pesta di Jakarta dengan mengundang kerabat keluarga dengan alasan gengsi. Anggi juga menganggap pilihan Bowo sangatlah aneh. Namun, Neti justru dengan mudah berteman dengan Agatha, gadis yang enerjik dan dapat menggelorakan hidup Bowo yang kaku sebagai seorang ilmuwan. Kedatangan keluarga Wiranto ke Yunani disambut hangat oleh Tuan Anaxopoulos, ayah Agatha. Selain kakak-kakaknya, Neti juga bersahabat dengan anak-anak panti asuhan sehingga ia pun tidak menyambut kedatangan calon istri Bowo. Tak lupa, ia juga pintar dalam mata kuliah antyropologi. Dosennya mengganggap Neti cukup hebat untuk membuat tesis berjudul Dampak Pengaruh Semesta Kosmos Makro maupun Mikro terhadap manusia tradisional khususnya yang sedang bertransisi di Indonesia.(kira-kira gitu judulnya).Ide pembuatan tesis ini diilhami oleh Bowo.

Minggu, 20 Januari 2008

Antimateri :my physics assignment

ANTIMATERI

DISUSUN OLEH YANTY, XI-IPA3/30

SMA GONZAGA
JL.PEJATEN BARAT NO. 10A
JAKARTA SELATAN
OKTOBER 2007

MATERI

Dalam Fisika dan Kimia, materi didefinisikan sebagai bahan yang membentuk objek-objek fisik yang ada sekarang ini. Para fisikawan menganggap materi terdiri dari fermion elementer, yaitu lepton, yaitu elektron, dan quark, up-quark dan down quark yang menyusun proton dan neutron, baryon dan meson. Proton, neutron dan elektron membentuk atom, atom membentuk molekul, dan apapun yang dibuat molekul dan atom merupakan materi. Photon dan boson bukan materi.

ANTIMATERI

Dalam Fisika partikel, materi mempunyai lawan yaitu antimateri. Antimateri adalah materi, namun mempunyai sifat yang berlawanan dengan materi biasa, contoh momentum angular, spin dan muatan listriknya. Antimateri disusun atas antipartikel yang terdiri dari Positron (positive electron), Antiproton dan Antineutron. Pion netral dan photon adalah contoh partikel yang tidak punya antipartikel. Antimateri tidak terdapat secara normal di Bumi. Antimateri dihasilkan dari peluruhan radioaktif dan sinar kosmik.

SEJARAH PENEMUAN ANTIPARTIKEL

Tahun 1928 P.A.M. Dirac mengajukan rumusan persamaan gelombang elektron baru sebagai perluasan persamaan Schrödinger dalam mekanika kuantum yang taat asas Teori Kerelatifan Khusus Einstein, dikenal sebagai Persamaan Dirac, yang menyebutkan teori mengenai kesimetrian ruang-waktu sebagai kesatuan utuh yang secaea mekanika berlaku untuk gerak benda atau partikel dengan kecepatan tinggi, mendekati kecepatan rambat gelombang cahaya. Persamaan Dirac juga menyibak teka-teki nilai spin elektron, s=1/2, momentum sudutnya 1/2h dan momen magnetiknya eh/2m yang muncul secara wajar tanpa paksaan. Dirac meramalkan pula kehadiran lawan dari elektron, yaitu elektron positif. Umumnya, orang-orang mengira bahwa proton merupakan partikel positif namun tahun 1932, elektron positif dapat dideteksi tanpa keraguan dalam fluks radiasi kosmik pada permukaan bumi. Carl Anderson mengamati fenomena sinar kosmik ini.Anderson menggunakan peranti pengamat kamar buih. Peranti ini terdiri dari hidrogen cair bersuhu rendah. Bila sebuah partikel bermuatan bergerak melalui hidrogen cair, atom-atom hidrogen sepanjang lintasannya akan terionkan dan energi pengionannya akan menimbulkan buih di dalam hidrogen cair. Bila buih mungil itu disinari cahaya, akan tampak suatu lintasan yang dapat dipotret. Lintasan lengkung partikel disebabkan oleh pengaruh medan magnet. Dari sejumlah rekaman foto jejak partikel, Anderson menemukan jejak partikel yang bermassa sama dengan elektron namun partikel itu melengkung ke arah berlawanan. Pasangan Joliot-Curie juga menemukan hal yang sama ketika melakukan transmutasi inti buatan dengan menembakan partikel alfa pada selembar aluminium di dalam kamar buih. Ketika pelat aluminium tidak lagi ditembaki, pancaran partikel yang bermuatan positif itu tetap berlangsung namun makin melemah. Setiap 2,5 menit, jumlahnya berkurang dengan faktor 2.

Partikel yang bermuatan sama dengan elektron ini dinamakan positron (positive electron) dengan lambang e+.

Tahun 1955, O. Chamberlain dan Emilio Segre dengan akselerator Bevatron menumbukkan dua proton berenergi tinggi sehingga menghasilkan antiproton dengan lambang . Reaksinya :

p + p → p + p + p +

Tahun 1955, Bruce Cork menemukan antineutron. Antineutron tentu saja bermassa sama dengan neutron dan tidak punya muatan. Tapi antineutron tersusun atas 2 anti-down quark dan satu anti up-quark. Momen magnetik antineutron juga berbeda dengan neutron, +1,91 µN untuk antineutron dan -1,91 µN untuk neutron. Perbedaan neutron dengan antineutron yaitu momen dipol magnetnya dan momentum angularnya. Pada neutron, momen magnetnya berlawanan arah dengan spinnya namun pada antineutron, keduanya sejajar. Seberkas neutron dalam medan magnet akan mengatur arah spinnya berlawanan arah medan, namun antineuton akan mengarahkan spinnya sejajar dengan arah medan magnet.

PARTIKEL ELEMENTER DAN ANTIPARTIKELNYA

Semua partikel elementer mempunyai antipartikelnya. Neutrino, elektron dan muon negatif bilangan lepton L=+1, sedangkan antineutrino, positron dan muon positif (lambang muon positif μ+ bisa juga sebagai antipartikel dari muon negatif μ-, tapi bisa juga partikel muon positif itu sendiri) mempunyai bilangan lepton L=-1. Materi biasa tidak terdiri dari neutrino sehingga susah membedakan neutrino dengan antineutrino. Ilmuwan menyadari dalam proses peluruhan beta positif dan negatif :

n → p + e- + v (peluruhan beta negatif)

p → n + e+ + v (peluruhan beta positif)

neutrino terlibat dalam peluruhan beta positif dan antineutrino terlibat dalam peluruhan beta negatif. Perbedaan lainnya yaitu spin neutrino dan antineutrino berlawanan arah.

Partikel elementer lainnya, baryon berat seperti Λ(lambda) melalui peluruhan radioaktif menghasilkan proton dan neutron(n) sedangkan antilambda Λ menghasilkan antineutron (n). Pada kasus lepton, muon μ- adalah antipartikel dari μ+ dan sebaliknya, karena μ- meluruh ke e- maka disebut partikel sedangkan μ+ merupakan antipartikelnya. Membedakan pion positif dan negatif dari antipartikelnya sedikit lebih susah. Pion π+ merupakan antipartikel dari π-, namun bisa juga merupakan π+ itu sendiri. Materi biasa tidak tersusun dari meson π lalu peluruhan π+ dan π- juga menghasilkan satu lepton dan antilepton. Maka, tiga partikel pion π+ dan π- mempunyai antipartikel π- dan π+.

Photon dan pion netral tidak mempunyai antipartikel. Hal ini disebabkan photon dan antiphoton adalah identik atau sama, begitu pula dengan pion netral. Untuk membedakan suatu partikel dengan antipartikelnya yaitu amati momen dipol magnetnya, muatan listrik, momentum angular, arah spin, bilangan kuantumnya dan reaksi peluruhannya.

PRODUKSI PASANGAN (PAIR PRODUCTION)

Produksi pasangan diunjukkan untuk membuat pasangan partikel dan anti-partikelnya, terutama pasangan elektron dan positron. Untuk menciptakan antiproton, O. Chamberlain dan Emilio Segre menumbukkan dua proton dalam kecepatan tinggi, begitu juga ketika Bruce Cork menemukan antineutron. Hal yang berbeda terjadi pada produksi pasangan elektron dan positron. Elektron dan positron tecipta saat sebuah photon yang melewati inti atom yang masif dan energinya dikonversikan ke dalam materi. Kehadiran inti atom diperlukan sehingga hukum kekekalan momentum dapat terpenuhi. Elektronnya tercipta sendiri, bukan milik atom. Lalu, muncullah positron dan elektron dari ketiadaan. Reaksinya dituliskan :

γ + γ → e- + e+

Energi photon yang hilang dalam proses ini dirubah menjadi energi relativistik positron E+ dan elektron E- dengan persamaan:

hv = E+ + E-

= 2moc2 + [E+ + E-]

Karena K+ dan K- selalu positif maka untuk melakukan produksi pasangan, photon harus memiliki energi sekurang-kurangnya 2moc2=1,02 MeV atau 1,64 X 10-13 J.

PEMUSNAHAN PASANGAN (PAIR ANNIHILATION)

Setiap partikel yang bertemu antipartikelnya, mereka akan dikonversikan dalam energi murni 100%, hal ini disebut pemusnahan pasangan. Antiproton dengan proton, antineutron dengan neutron dan positron dengan elektron yang bertemu akan ter-annihilated (musnah). Berikut ini proses pemusnahan elektron-positron.

Positron yang kehilangan energi kinetiknya oleh proses ionisasi, menyatu dengan elektron dan musnah. Total massa mereka dirubah menjadi energi dan 2 photon yang bergerak ke arah berlawanan, berkebalikan dengan proses produksi pasangan. Reaksinya:

e- + e+→ γ + γ

Mustahil pemusnahan pasangan elektron-positron hanya menghasilkan 1 photon karena seluruh energi dan momentumnya tidak akan dirubah hanya ke dalam satu photon. Jika hvmin=moc2, maka energi yang dihasilkan adalah 1,64 X 10-13 J atau 1,02 MeV dan untuk mengkoservasikan momentum, setiap quantum mempunyai energi 8,2 X 10-14 J. Jika positron-elektron dimusnahkan, akan muncul radiasi gamma sampai 511 keV dihitung dari massa elektron. Sementara pemusnahan proton-antiproton menghasilkan energi setara massa proton, sekita 1 GeV. Namun, satuan yang dipakai adalah rentang sinar X, bukan sinar Gamma.

PERKEMBANGAN TEKNOLOGI ANTIMATERI

Energi yang dihasilkan dari materi-antimateri menjadi energi yang paling efisien yang pernah dikembangkan. Energi yang ditimbulkan dari pemusnahan materi-antimateri energi yang 10 milyar kali lebih banyak daripada pembakaran hidrogen dan oksigen untuk pesawat antariksa. Reaksi materi-antimateri juga 1000 kali lebih hebat daripada fisi nuklir dan 300 kali lebih hebat daripada fusi nuklir.

Permasalahan yang muncul pertama kali begitu antimateri ditemukan adalah bagaimana cara menyimpan antimateri tersebut. Karena antimateri akan langsung bereaksi dengan materi, maka atom-atom antimateri disimpan di dalam tabung yang disebut jebakan elektromagnet/jebakan antimateri. Tabung vakum ini memiliki kutub elektromagnet di masing-masing ujungnya sehingga antimateri tersebut melayang di tengah tabung. Bisa juga menggunakan kristal dilithium (2<5>6 dilithium 2<:>1 diallosilicate 1:9:1 heptoferranide) karena kristal tersebut bisa mengatur kecepatan proses peniadaan materi-antimateri, dan merupakan satu-satunya kristal yang dapat menyerap antimateri. Kristal adalah atom yang tersusun dalam suatu kisi-kisi. Bayangkan atom antihydrogen disusupkan melewati kisi-kisi kristal dilithium dan berhenti pada jarak tertentu sebelum bersentuhan dengan atom materi.

Antimateri tidak terdapat secara alami di bumi, malah mungkin hanya ada sedikit di sistem Tata Surya dan Galaksi Bimasakti, antimateri banyak terdapat di akumulator antiproton di Fermilab dan CERN (Conseil Européean pour la Recherche Nucléaire-Organisasi Eropa untuk Penelitian Nuklir). Lembaga ini pula yang menciptakan antiatom tahun 1995 yaitu antihydrogen.

Salah satu kegunaan antimateri yaitu PET (Positron Emission Tomography). Dalam bidang kedokteran, metode PET sangat membantu dalam menganalisis penyumbatan-penyumbatan pembuluh darah pada bagian tubuh tertentu yang terlalu berbahaya disinari sinar X. Positron dicampurkan dengan zat cair tertentu dan disuntikkan ke dalam tubuh. Ledakan sinar gamma akan dideteksi oleh dokter lewat monitor. Tak ada zat sisa kecuali zat cair yang mengantar positron masuk ke dalam tubuh. Tentu saja komposisi elektron zat cair dan positron disesuaikan agar ketika terjadi pemusnahan didalam tubuh, ledakan sinar gammanya tidak akan merusak jaringan tubuh. Teknik kedokteran ini dikembangkan oleh Michael Ter-Pogossian dan Michael E. Phelps tahun 1975 di Washington University School of Medicine.

Kegunaan antimateri lainnya yaitu sebagai sumber energi. Reaksi 1 kg antimateri-materi dapat menghasilkan energi sebesar 1,81 X 1017J(180 petajoule) setara dengan 40 megaton TNT. Energi sebesar itu tidak bisa digunakan seluruhnya karena 50% diambil oleh neutrino atau hilang. Selain itu, teknologi sekarang belum memungkinkan digunakannya antimateri sebagai sumber energi.

Antimateri juga dapat digunakan sebagai senjata. Sama seperti sumber energi antimateri, senjata ini masih berupa alat hipotetis. US Air Force sangat tertarik dengan riset Fisika antimateri untuk digunakan sebagai bom setelah Perang Dingin usai.

Sumber energi dan senjata dari antimateri mungkin harus menunggu perkembangan teknologi selanjutnya. Selain itu, terkadang harus siap merugi karena untuk menciptakan sebutir antiproton saja butuh ongkos jutaan dolar. Jadi, ongkos pembuatan menjadi penghambat, 1 gram antimateri menghabiskan 25 milyar dolar AS hingga 100 quadrilion dolar, waktu yang diperlukan untuk memproduksinya kira-kira 100 milyar tahun. Dalam fiksi, antimateri merupakan sumber energi U.S.S Enterprise dan senjata torpedo foton dalam Star Trek. Untungnya, karena mahalnya biaya produksi dan belum berkembangnya teknologi untuk memproduksi, maka antimateri bukanlah sumber energi, dengan penjelasan sebagai berikut.

Fermilab menghasilkan antiproton lewat benturan proton pada tingkat energi medium dengan sasaran lithium. Antiprotonnya langsung diarahkan ke cincin tempat penyimpanan. Dengan bekerja dengan kapasitas rata-rata, Fermilab menghasilkan sekitar 50 milyar antiproton per jam. Dengan asumsi Antiproton Source bekerja selama 273 hari per tahun atau 6000 kali operasi per tahin, maka Fermilab menghasilkan 300 000 milyar antiproton per tahun. Tahun 1995, sekitar 500 juta dollar AS berhubungan dengan produksi antiproton maka setiap satu dollar dihasilkan 6 juta antiproton (setelah dikurangi biaya administrasi laboratoriumnya). Namun jika mengabaikan antiproton energi tinggi, bisa didapatkan 10-20 juta antiproton per dollar. Jika antiproton seharga satu dollar dirubah menjadi energi, energi yang didapat setara dengan kebutuhan energi untuk memanaskan ¼ gram air sampai naik 1/1000 derajat celcius. Dengan kata lain, dibutuhkan 100 000 Antiproton Source Fermilab untuk menyalakan bola lampu dan tentu saja, butuh lebih dari anggaran tahunan pemerintah Amerika untuk menerangi ruang keluarga. Selain itu, energi yang diperlukan untuk membuat satu antiproton melebihi energi hasil konversi antiproton tersebut.

LEMBAGA FISIKA PARTIKEL DI EROPA

CERN adalah salah satu lembaga atau lamboratorium penelitian fisika partikel di Eropa. CERN terletak di Jenewa, Swiss, dan mempunyai akselerator partikel yang disebut Large Hadron Collider (LHC) untuk meneliti dan mempelajari misteri antimateri. CERN bekerjasama dengan ATRAP dan ALPHA dalam melakukan riset mengenai antimateri. Lembaga-lembaga ini terdiri atas ilmuwan-ilmuwan dari berbagai negara dan universitas, yang tujuannya membuat antiatom, lebih spesifik lagi, antihydrogen. Eksperimen ini dilakukan di Antiproton Decelerator di CERN. Awalnya, CERN melalui proyek ATHENA berhasil membuat 9 atom antihydrogen. Antihydrogen ini terlalu “panas” untuk dipelajari sehingga CERN berkolaborasi dengan ALPHA dan ATRAP untuk membuat antihydrogen yang “dingin”. Tahun 2002, antihydrogen berhasil yang dingin berhasil dibuat oleh ATRAP dan ATHENA.

LEMBAGA FISIKA PARTIKEL DI AMERIKA

Jika CERN di Eropa memiliki LHC, maka Fermi National Accelerator Laboratory atau Fermilab di Illonis, Chicago, USA memiliki Tevatron. Antiproton Source tersusun dari cincin-cincin magnet besar. Antiproton yang baru diproduksi, diarahkan masuk ke dalam cincin ini. Cincin itu sekaligus tempat penyimpanan sampai mereka diperlukan untuk ter-annihilasi di dalam Tevatron, collider (alat untuk mempercepat laju partikel dan menumbukkan mereka dari arah yang berlawanan) energi tinggi. Tevatron berbentuk cincin dengan keliling 2,5 km. Proton disuntikkan ke dalam cincin lalu dipercepat dari satu sisi, sementara antiproton dipercepat dari arah berlawanan. Medan magnet diatur sedemikian rupa sehingga kedua aliran partikel dapat terpisah di sepanjang tabung. Pada titik yang sudah ditentukan, kedua aliran disatukan sehingga terjadi benturan.

ANTIATOM

Antiatom terdiri dari antiproton dan antineutron sebagai antinukleonnya (anti-inti atom) dan dikelilingi oleh positron, persis seperti atom materi. Antiatom juga punya karakteristik yang pasti sama dengan atom materi biasa, kecuali bahan penyusunnya yaitu antipartikel. Sejauh ini, berhasil diciptakan antihydrogen, antideuterium, antitritium dan antihelium.

CERN berusaha menciptakan antihydrogen dengan menembakkan antiproton didalam akselerator partikel dengan jet xenon. Saat antiproton mendekati inti xenon, terjadi produksi elektron-positron. Positron akan ditangkap oleh antiproton untuk membentuk antihydrogen. Metode ini gagal dilakukan karena menghasilkan antihydrogen dengan suhu ribuan Kelvin. Eksperimen yang dibuat oleh kolaborasi ATHENA dan ATRAP berhasil menciptakan antihydrogen dingin dengan cara memerangkap positron dari sumber radioaktif sodium bersama dengan antiproton ke dalam jebakan magnetik, sehingga 100 atom antihydrogen berhasil diciptakan dalam waktu 1 detik.

INTERAKSI GRAVITASI TERHADAP ANTIMATERI

Interaksi gravitasi terhadap antimateri belum diteliti oleh para ilmuwan, antara materi dan antimateri. Teorema CPT mengungkapkan bahwa antimateri akan punya interaksi gravitasi yang normal dengan antimateri, sama seperti materi dengan materi. Jika ada antiapple (antiapel) di atas antiearth, maka seharusnya antiapple itu jatuh ke antiearth sama seperti apel jatuh ke Bumi. Para ilmuwan mencoba mengamati interaksi gravitasi antara neutrino-antineutrino saat terjadi Supernova 1987. Sayangnya, interaksi itu terlalu lemah untuk dideteksi. Fisikawan William Fairbank juga mencoba mendeteksi interaksi gravitasi antara elektron-positron namun susah sekali mendeteksi interaksi gravitasinya pada level partikel. Photon, yang merupakan partikel dan antipartikel sendiri, bertingkah seperti partikel materi dan antimateri secara simetris. Dua argumen yang masih ada mengenai gravitasi adalah antimateri akan tarik-menarik dengan materi atau antimateri akan menjauhi materi. Seharusnya, antimateri akan tarik-menarik dengan materi sehingga mereka bisa termusnahkan, namun antimateri juga bisa menjauhi materi seperti dalam proses produksi pasangan.

HIPOTESIS ANTIUNIVERSE DAN ASIMETRI MATERI-ANTIMATERI

Ilmuwan percaya jika ada antimateri, maka alam semesta (universe) terdiri dari materi dan antimateri. Masalahnya, karena pemusnahan materi-antimateri, maka harus ada ruang kosong bagi antimateri supaya tidak bersentuhan dengan materi, sehingga muncul hipotesis adanya antiuniverse (anti-alam semesta/ anti-jagad raya). Namun, berapapun terisolasinya antiuniverse, suatu saat akan ada jabat tangan antara universe dan antiuniverse sehingga terjadi bencana banjir sinar gamma akibat pemusnahan. Walaupun begitu, sebagian ilmuwan percaya bahwa selain antiuniverse, pasti ada antistar (antibintang), antiearth (antibumi) bahkan antiyou (antimanusia). Hipotesis yang lebih masuk akal adalah ketika terjadi asimetri materi-antimateri saat peristiwa Big Bang (ledakan Besar) terjadi. Kelebihan materi sekitar 108 atau 109. 99,999999 persen materi musnah bersama seluruh antimateri sehingga 0,000001 persen materi yang menyusun jagad raya sekarang. Perkiraan perbandingan lainnya yaitu 30.000.0001 quark berbanding 30.000.000 antiquark. Namun, ada asimetri antar baryon dan fermion terhadap antibaryon yang bereaksi kuat. Ini disebut asimetri baryon. Teori yang menjelaskan asimetri baryon ini disebut baryogenesis, dimana lahirnya bilangan baryon yang bukan nol. Syarat terjadinya yaitu harus ada penyimpangan simetri konjungasi muatan listrik dan paritas, disebut CP violation. Proses itu harus terjadi saat tak ada keseimbangan (out of equlibrium).

DAFTAR PUSTAKA

Beiser, Arthur. 1987. Konsep Fisika Modern Edisi Keempat.

Jakarta : Penerbit Erlangga.

Krane, Kenneth. 2006. Fisika Modern.

Jakarta : Penerbit Universitas Indonesia.

Krauss, Lawrence M. 2003. Fisika Star Trek.

Jakarta : Kepustakaan Populer Gramedia.

Shipman, H. L. 1976. Black Holes, Quasars And The Universe.

Boston : Houghton Mifflin Company.

Whelan dan Hodgson. 1978. Essential Principles of Physics.

London : John Murray Ltd.

Wospakrik, Hans J. 2005. Dari Atomos Hingga Quark.

Jakarta : Penerbit Universitas Atma Jaya dan Kepustakaan Populer Gramedia.

Sumber Internet :

http://en.wikipedia.com

http://www.cern.ch

Scientific Literature : ORME Physics

This article is taken from halexandria.org.

ORME Physics

The quantum physics of the ORME is fundamental to its validity. The fascinating part is that what is being discovered in the laboratories of modern physics (primarily in only the last ten to fifteen years) not only corroborates David Radius Hudson’s theory concerning Precious Metals, but provides the evidence upon which An ORME History is based. A short cut version of this is noted in the Scientific Literature and ORME Notes, but is given here in considerably more detail. It begins with...

Microclusters

The Alchemists of old, in their quest to accomplish “The Great Work”, i.e., to prepare the Elixir of Life and The Philosopher's Stone, (or more crudely, to transmute lead into gold), taught that the key to success was to “divide, divide, divide...” This suggests that only in freeing the atoms of an element from the confines of its crystalline-like structure of many atoms of the same or diverse elements, can one hope to achieve the alchemist’s goal. If, today, aspiring Alchemists were to take such sage advice and simultaneously apply the discipline of mainstream science to their quest, then they might be apt to achieve some rather astounding and quite profound results. The exhortation to divide, divide, divide... might have some particular relevance even today.

Interestingly, Michael A. Duncan and Dennis H. Rouvray, in their excellent article entitled “Microclusters” [1], begin with the statements: “Divide and subdivide a solid and the traits of its solidity fade away one by one, like the features of the Cheshire cat, to be replaced by characteristics that are not those of liquids or gases. They belong instead to a new phase of matter, the microcluster.” In effect, the Alchemists’ injunction to “divide, divide, divide...”, may have significant implications for nuclear and quantum physics.

Technically, microclusters are considered to be tiny aggregates of a material comprising two to several hundred atoms. As such, their existence raises some intriguing questions, including specifically, how might the atoms of a particular element reconfigure themselves if freed from the influence of the other atoms that surround them?

This is a fundamentally important question. Electrical conductivity, for example, depends on the sharing of free electrons between atoms. How small might a cluster need to be, before such sharing is disrupted or modified? In the extreme case, when a microcluster undergoes the ultimate division to achieve monoatomic, elemental status -- i.e., single atoms essentially independent of their neighborhoods -- what happens to such electronic sharing and other physical characteristics of combined matter? What fundamental physical characteristics might monoatomic elements exhibit?

Atoms, in the form mainstream science has until recent years dealt with almost exclusively, can be thought of as highly social entities; in other words, they have a strong tendency to connect with other atoms. This is particularly true of atoms of the same element.

Atoms of lead, for example, tend to cluster in seven and ten-atom groups. The ten-atom cluster is also a key element in diamond, a crystalline form of carbon. Other even more elaborate structures have been proposed for carbon and silicon. Silicon atoms, for example, may form a knobby symmetry of 45 atoms to a group, while carbon atoms may congregate in clusters of 60 atoms, a soccer-ball shape called buckminsterfullerene.

The reason for these clusters of multiple atoms appears to be that certain configurations are much more stable than others. Stability in this sense implies that the cluster or atom is unlikely to subdivide of its own accord, and may, in fact, strongly resist subdividing even when subjected to external forces. Such stability is extremely important in physics and, as it turns out, is inevitably related to the quantum physical concept of spin.

Spin

Of all the ideas of atomic and sub-atomic physics and chemistry, the concept of spin is perhaps as fundamental a characteristic or physical property of matter as exists. All sub-atomic or elementary particles (such as electrons, protons and neutrons) move in space and time and a portion of this movement is inevitably a spinning motion. This spinning motion is in turn inherently related to the stability of an atom.

For example, two atoms bound together will form an elongated, dumb-bell type formation, which when placed in a high-spin condition, might tend to fly apart. For a single, monoatomic element, the issue involves the degree to which the atom departs from its perfectly symmetrical, spherical shape. It's rather like an automobile tire, which when slightly out of round, tends to wobble, throw off chunks of tire, or in general exhibit an extremely unstable rotation -- particularly at higher rotational speeds. The degree to which a single atom achieves spherical symmetry and thus greater stability, depends upon the shape and structure of its nucleus where the overwhelming mass of an atom is concentrated. To evaluate the potential for symmetry in a nucleus, it is thus necessary to have some idea about the nuclear internal structure.

Nuclear Models

In Duncan and Rouvray's paper [1], three nuclear models are mentioned, and a composite of the three complimentary theories is used to describe the internal workings of the nucleus. These three models include the Liquid-Drop Model, first proposed in the 1940s by the Danish physicist, Niels Bohr, the Nuclear Shell Model, proposed independently by Maria Goeppert Mayer and Johannes H. D. Jenson in 1949, and the Collective Model, a variation on the liquid-drop idea.

Each of these models recognizes that the structure of the nucleus depends upon two distinct types of interactions, which are identified as the strong and the electromagnetic. The strong interaction is the nuclear force that binds protons to neutrons and to each other, while the electromagnetic force results in the attraction of dissimilar charged particles (such as protons to electrons), but exhibits a strong repulsive force between like charged particles (e.g. protons repelling other protons, and electrons repelling other electrons -- neutrons having no charge are not affected by the electromagnetic force). The nuclear strong force binds nucleons (the collective term for protons and/or neutrons) very tightly, but acts over a very short range.

To separate two nucleons, for instance, that are one fermi (10-15 meters) apart, an energy of one million electron volts (1 Mev) is required. However, if these same two nucleons are 10 fermis apart, then the energy needed to dissociate them is only about 10 electron volts (10 ev). The electromagnetic or Coulomb force is much weaker than the strong nuclear force, but acts over a much longer range. In the case of two protons being one fermi apart, the Coulomb force is about 100 times weaker than the strong nuclear force. But if the distance is increased to 10 fermis, the Coulomb force becomes about 10 times stronger than the nuclear force.

The importance of the relative strength of the strong and Coulomb forces is that -- if a proton or a cluster of neutrons and protons, in the normal course of a nucleus vibrating due to an absorption of energy, moves away from the bulk of the nucleus -- the cluster can reach a point where the distance from the cluster to the main nucleus is closer to 10 fermis than 1 fermi and the Coulomb force overpowers the strong nuclear force. Such a situation could lead to a spontaneous fission of the nucleus.

Spontaneous Fission

How could such a situation arise? Think of a large nucleus in the form of a drop of liquid. According to Walter Greiner and Aurel Sandulescu, in their article, “New Radioactivities” [2] this “nuclear drop vibrates to some extent as it absorbs energy. Because of the vibrations, the drop can deform into two smaller nuclear drops connected by a long neck. As the distance between the two smaller nuclear drops increases, the potential barrier (nuclear forces between the two drops) decreases. The smaller drop can then penetrate the potential barrier as long as the energy of the decay products (the smaller drops) is less than the energy of the deformed nucleus.”

The energy of the nucleus is a combination of the binding energy (the energy required to hold the nucleus together), and the energy associated with the mass of the protons and neutrons (the latter in accordance with the equation, E=mc2; where E is the energy, m the mass, and c2, is the speed of light squared). The binding energy per nucleon varies from about 7 Mev for Helium-4 to 9 Mev for Iron-56. A high energy nucleus can thus spontaneously transform itself to a lower energy nucleus, but not the other way around. Furthermore, if the nucleus is absorbing additional energy, this energy is transformed into a higher spin of the nucleus, and thus increases the likelihood of a spontaneous fission.

To understand the mechanics of how a nuclear-style liquid drop -- under conditions of high spin -- might throw off a portion of itself, it is necessary to consider the structure and organization of the protons and neutrons within the nucleus. To do this we add to the liquid drop model the fact that the nuclei of different elements apparently consist of shells occupied by specific numbers of protons and neutrons -- in the manner of an electron shell structure surrounding the nucleus. The occupation of these shells by nucleons (and in the case of electron shell structure, by electrons) is strictly governed by certain observed laws of quantum mechanics, the most notable being the Pauli Exclusion Principle.

Pauli Exclusion Principle

Pauli’s Exclusion Principle holds that a proton cannot occupy the exact same energy state as another proton. The only exception is two or more protons in an energy state can have different spins (this latter factor being very important). The same is true of neutrons and electrons. As a result, in the process of adding protons to a nucleus, the first proton fills the lowest energy state, followed by the next proton filling the next lowest energy state, until there are as many filled states as protons. The neutrons in a nucleus fill another set of energy states. [And in the atom, the electrons fill their own set of energy states.]

In the case of electrons, if we proceed from the lighter to heavier elements with increasing nuclear charge Ze (where Z is the number of electrons, and e the charge of the electron), the individual electron levels will be filled successively as the Pauli Exclusion Principle allows. Then, whenever experimenters observe that two successive levels are wide apart in their energy levels, we speak of the closing of an atomic shell, because the next electron can be added to the atom only at a much higher energy level -- where the binding energy is much less (i.e. the last electron is less tightly held to the atom). According to Maria Goeppert Mayer and J. H. D. Jenson, in their book, Elementary Theory of Nuclear Shell Structure [3], both experimental and theoretical calculations agree that the sequence of electronic levels in the atom is given by:

Levels: 1s | 2s 1p | 3s 2p | 4s 1d 3p | 5s 2d 4p | 6s 1f 3d 5p | 7s ...

Electrons: 2 | 2 6 | 2 6 | 2 10 6 | 2 10 6 | 2 14 10 6 | 2 ...

Cumulative: 2 | 4 10 | 12 18 | 20 30 36 | 38 48 54 | 56 70 80 86 | 88 ...

The notations on the first line derive from the conventional notation of spectroscopy, while the second line gives the number of electrons that the Pauli Exclusion Principle allows for that level. Note that the “s” levels always contain only 2 electrons, the “p” levels only 6, the “d” levels only 10, and so forth. These number are in turn, related to the possible spin orientations of the electrons -- a combination of their orbital spin about the nucleus and their spinning about their own axis. [The analogy is the Earth spinning about the Sun (its orbital, annual motion), while at the same time, the Earth is spinning about its own axis (its daily motion). The two orbital motions combine in a very specific manner.]

Note that the 1s energy level with two electrons is allowed by their having opposite spins about their own axis (known as +1/2 and -1/2). The 1p level allows for 6 different orientations of spin (+3/2, +1/2, -1/2, and -3/2). And so forth. The number of electrons to affect a “shell closure” are shown above as a vertical line, and explain the pronounced position of the noble gases (Helium, Neon, Argon, Krypton, Xenon, and Radon) in the Periodic Table (which all have closed electronic shells, and thus are chemically inert).

Nuclear Shell Structure

Nuclear shell structure is somewhat more complicated due to the fact that instead of the relatively simple electromagnetic interaction of the atomic electron structure, the nuclear case is a combination of the strong nuclear force and the electromagnetic Coulomb force. The result is a situation where the spin and orbital angular momentum have a substantial coupling effect, and tend to split energy levels in an unexpected way.

According to Greiner and Sandulescu [2], “If the shells of a nucleus are completely filled, as are those of calcium and lead, the nucleus is stable and consequently spherical. Nuclei that have double magic numbers are particularly stable -- for example, Calcium-48 (20 protons and 28 neutrons) or Lead-208 (82 protons and 126 neutrons).” Conversely, when the outermost shell of either protons or neutrons is not filled -- i.e. the number of protons and/or neutrons depart from the “magic numbers” -- then the nuclear structure is less stable. Such instability can increase the likelihood of spontaneous fission. In this case, the situation is termed superasymmetric fission of the element, inasmuch as part of the root cause is the fact that the nucleus departs significantly from the spherical or near-spherical configuration.

Superdeformation of Nuclei

This brings us to the third nuclear structure model, wherein the so-called Collective Model holds that whenever the outer nucleons move with respect to the nucleons of the inner nucleus (in effect the nucleons inside the last closed shell), the outer part of the nucleus can deform. Typically such deformations are relatively small. If one thinks of an elliptical shape, the deformation is such that the ratio of the lengths of the longer axis to the shorter axis is approximately 1.3 to 1. But the Collective model also allows for superdeformation in certain nuclei where the ratio is much larger. For example, numerous authors have reported on superdeformations in nuclei where the ratio is on the order of 2 to 1. These superdeformations occur particularly in the cases of high-spin nuclei.

When the physics of these superdeformed, high-spin nuclei is combined with microcluster-style characteristics of these same elements, even more interesting results are obtained. According to Duncan and Rouvray [1]: “Many cluster properties are determined by the fact that a cluster is mostly surface.” “When electrons are shared by the whole cluster in a delocalized pattern, so that negative charge is no greater at one point than another, the cluster may take on certain aspects of solid metal, such as conductivity.” They also note “lone atoms grip their electrons more tightly than clusters of atoms grip shared electrons.” This effect also contributes to the high-spin of the nucleus. The analogy would be that of an ice skater pulling in their arms and thereby increasing their rotational spin.

Y. R. Shimizu and R. A. Broglia [4] pointed out “that the usual Cooper instability will not exist any more in small particles containing a reduced number of fermions, like, e.g., metallic particles.” This is an intriguing statement in that it combines the effects of high-spin nuclei and nuclei in their monoatomic or microcluster state, and thereafter yields a connection with Superconductivity. For it is the conditions of high-spin that nuclei may effectively screen the electrons in such a way as to allow them to pair, thereby losing their particle aspects. Such pairing in electrons is referred to as Cooper pairing, and, according to current theories, is the essential ingredient in superconductivity. Shimizu and Broglia go on to state that “small superconductors with fewer than about 104 to 105 electrons as well as, e.g., atomic nuclei should be strongly affected by quantal size effects.”

Like the pieces of a puzzle, the referenced papers and others like them, can be drawn together into a more manageable form or theory by noting the following critical points:

· Atomic nuclei with nucleons in unfilled shells will depart from the spherical symmetry of filled shells with “magic numbers”, and will therefore be more likely to undergo superdeformation.

· Some elements, therefore, will be more likely to superdeform than others.

· Monoatomic elements, freed from the influence of the surrounding matter -- on a nuclear scale of a few fermis -- are even more likely to superdeform, depending upon the extent to which their shell structure departs from a spherically symmetric shape.

· The combination of these factors yields superdeformation (i.e. deformation of 2:1) of the nucleons and the proton charge (the latter which provides a “handle” by which spin can be increased), and this in turn implies that these nuclei are more likely to achieve a high-spin state.

High-Spin Nuclei

This high-spin nuclear state is important in that under magnetic fields in the range of 700,000 gauss, it has been observed that such states allow for transferring energy from nucleus to nucleus without loss of energy. This is reminiscent of Superconductivity. Other experimental observations also imply the existence of high-spin states without magnetic fields -- which may also lead to superconductivity. One possibility is that the high-spin state provides for a “smearing” of the outer charge from the electrons in the outermost, unfilled shells of the atom, in such a way as to screen the electrons from one another, allowing them to combine in Cooper pairs, and in the process, lose their particle aspect and become photons -- or quanta of light. The fermions (electrons) thus become Bosons (photons) in a process referred to as Bose Condensation, and one achieves what is virtually a nucleus surrounded by light instead of electrons!

A paper by Mohit Randeria, Ji-Min Duan, and Lih-Yir Shieh, “Bound States, Cooper Pairing, and Bose Condensation in Two Dimensions”, [5] includes other details on the potential for superconductivity. In many respects, the title of the paper says it all: Combining bound states, Cooper pairing and Bose condensation. It is, however, noteworthy that the discussion is based on superconductivity being in two dimensions, inasmuch as many superconductors exhibit their superconductivity in two dimensions instead of three. The two dimensional aspect will prove to be highly significant later in this discussion when yet another field of physics is incorporated herein.

Superconductivity

An excellent discussion on the current state of the fascinating subject of superconductivity has been provided by Frank J. Adrian and Dwaine O. Cowan, in their article, “The New Superconductors” [6]. Adrian and Cowan have observed, for example, that “many, but not all, conductors become superconductors when cooled sufficiently.”

This is an extremely important, albeit well known, element of superconductivity: Matter at near absolute zero temperatures (zero degrees Kelvin -- oK) often exhibit characteristics of superconductivity. This immediately connects with our previous discussion in that for elements in the monoatomic state, there is no energy bound in the inter-atom system, but only in the individual atom. Thus, while the internal temperature of a microcluster of atoms might be in the range of 20 to 100 oK, and that of a diatomic element around 10 oK, a monoatomic element may well be in the neighborhood of 1 oK. This is equivalent to approaching the Zero-Point Energy, implying that taking a sample of material to the monoatomic state is the same as taking it in the direction of zero oK, wherein virtually all conductors become superconductors!!!!!

Adrian and Cowan point out that superconductivity, as shown by the classic BCS Theory “involves pairing of conduction electrons by some inter-electron attraction and a condensation of these pairs, known as Cooper pairs, to form a macroscopic quantum state. This state has many unique properties including zero electrical resistance and perfect diamagnetism, expelling an external magnetic field up to a limiting critical field strength. Electrical resistance is zero because the Cooper pair condensate moves as a coherent quantum mechanical entity, which lattice vibrations and impurities cannot disrupt by scattering individual Cooper pairs in the same way they scatter single electrons in a conductor.” From our previous discussion, we might think of the Cooper pairs as photons of light such that, sure enough, the photons of light do not interact with lattice vibrations and impurities in the same way as electrons! [Need I say, “Duh!”?]

The initial attraction between the electrons which result in the creation of Cooper pairs, according to Adrian and Cowan, may be due to the electrons’ “interaction with vibrations of the crystal lattice, which are called phonons”, or “an unconventional electron-pairing mechanism mediated not by lattice vibrations but by interaction of the conduction electrons with charge or electron spin (magnetic) fluctuations in some electronic subsystem.” The latter seems far more likely.

Spin plays an enormous role in a wide variety of atomic and sub-atomic activities, and it would appear highly probable that it will once again have dramatic consequences on our theoretical understanding. In addition, lattice vibrations would be virtually non-existent for monoatomic elements (inasmuch as the lattice or inter-atom connecting grid no longer exists), and as we will discuss below, variations in the superconductivity potentialities for different elements may rest heavily upon a more detailed understanding of spin than presently exists.

Finally, the interactions of the electrons may also be related to the Casimir Effect, a very important theory which accounts for the fact that the charge of an electron within the confines of the electron itself does not result in a repulsion of the like charges across the extent of the electron -- in other words, the Casimir Effect allows the electron to stay together in one piece. (See, for example, P. W. Milonni, et al [7].)

Adrian and Cowan discuss a variety of organic and metallic superconductors. They note, for example, that about forty superconductive “salts of organic donors and complex anions have been found,” and that organic superconductors have highly anisotropic conductivity. “Also, for the organic conductors, there is remarkably good correlation between their conductivity at room temperature” and the critical temperature above which a superconductor ceases to exhibit the characteristics of superconductivity. The poorer room temperature conductors, furthermore, have a much higher critical temperature.

An example of a relatively high temperature (93 oK) metallic superconductor is Yttrium Barium Copper Oxide (YBa2Cu3O7), which is formed by repeated healing and cooling of the compound. In an article in Scientific American [8], the authors note, “imperfections can be smoothed away by heating and cooling.” David Hudson has suggested that this heating and cooling may very well result in water vapor from the atmosphere bleeding into the compound so as to combine hydrogen and oxygen elements in such a way that some of the copper is left in a monoatomic state. This in turn may result in a series of asymmetric, high-spin copper nuclei, arranged in a line (the atoms seeming to space themselves automatically some 6.3 Angstroms -- 630,000 Fermis -- apart); then resonating in two dimensions (thereby perpetuating a wave), and in this manner achieving superconductivity.

Adrian and Cowan have also noted that superconductivity often depends on the elements or molecules having “either a fractional excess or deficiency of electrons”, and the energy required to break up a Cooper Pair in a superconductor rises with decreasing temperature (i.e. approaching oK). But perhaps the most striking characteristic of superconductors, according to Adrian and Cowan, is the fact that when “a material is in its superconducting state, it excludes from its interior an applied magnetic field up to a critical magnetic field strength. A superconductor also expels a pre-existing field when it undergoes transition to the superconducting state, a phenomenon known as the Meissner effect.”

Meissner Effect

The Meissner effect “arises from the quantum nature of superconductivity.” Because a superconductor is a macroscopic quantum state, its wave function must be unchanged for any closed path within the superconductor. That is, the quantum mechanical phase change around the path must be an integral multiple of 2p. This same restriction, when applied to orbital or spin angular momentum, is what specifies the allowed electronic orbitals in the Bohr model of the atom [discussed above]. In other words, the “Meissner effect is a consequence of flux quantization."“

It “takes energy to expel a magnetic field from a superconductor. This fact can actually be seen in the dramatic phenomenon of magnetic levitation in which a magnet will float freely above a superconductor at the point where the upward force generated by the field-expulsion energy balances the downward force of gravity.” “The energy required to expel a magnetic field from the interior of a superconductor places an upper limit on the strength of the magnetic field that a superconductor can expel. A material loses superconductivity above a critical field strength, where the field-expulsion energy exceeds the stabilization energy of the superconductor.” [6]

According to Adrian and Cowan [6], “The Meissner effect is the definitive test of superconductivity.” This agrees with the Hudson's view that superconductors are defined best, not as current flowing without resistance, but by the fact that a superconductor does not allow magnetic potential to exist within the superconductor. Initially, however, in order for the superconductor to become superconducting, it does need an external magnetic field, one which can be rejected.

For example, a single-element superconductor will respond to a magnetic field of 2 x 10-15 ergs. The Earth's magnetic field is 0.78 gauss (where one gauss is 1018 ergs). Thus the Earth's geomagnetic field can initiate the Meissner field. And given more magnetic field potential, this causes greater Cooper pairing (and thus more light), and a greater Meissner effect (until the external magnetic potential causes the Meissner field to collapse). But once initiated, even if you remove the external magnetic field, the superconductor will continue to flow, potentially forever.

Within the superconductor itself, there is zero voltage potential (while at the same time, perfect amperage). In order to insert energy into the superconductor, it is necessary to tune the vibrational frequency of the electrons to that of the superconductor. The tuned electrons then form Cooper pairs, which, in turn, produces photons, or light. In this form, the electrical energy does not have to exit the superconductor, with any amount of light being able to exist within its interior. To obtain energy out of the superconductor, one must tap into the resonant vibrational frequency. There are other characteristics of superconductivity which are even more amazing.

For example, David Hudson has described superconductivity as “liquid light flowing at the speed of sound.” [Shades of Sonoluminesence!] He has also described the Meissner field as a non-polar magnetic field, whereupon it acts as a perfect radiation shield.

Other intriguing aspects of superconductivity include Hudson’s idea that the phenomena of spontaneous combustion may conceivably be a Meissner field flux collapse. There is also the intriguing concept that when two superconductors touch (i.e. their Meissner fields touch), this allows for instantaneous communication between the two superconductors.

And if this were not enough, it is also understood that superconductor flow can levitate on the Earth's magnetic field (in effect, excluding all magnetic fields from its interior, including that of the Earth's).

In this state of intra-communication and exclusion of other fields, Hudson believes it is conceivable that the superconductor no longer exists in our space-time, as if the superconductors are in a world of their own -- all atoms in a material acting like a single atom (and where time is timeless Zero-Point Energy). In Hudson’s view, the atoms are coherent, resonating in unison with, and are thus associated with a specific vibrational frequency, a single wavelength within the superconductor (similar in principle to the coherent, single wavelength of lasers).

Zero-Point-Energy and Superstrings

One of the most astounding characteristics of superconductors has been demonstrated in Hudson’s experiments, wherein monoatomic Iridium was found to have no gravitational attraction, as if it truly existed outside of space and time. Other experiments indicated that in the process of chemically isolating certain of the precious metals, a 44% weight loss was initially observed. Such a weight loss has been predicted as a result of fluctuations in the Zero Point Energy. To appreciate the significance of this experimental correlation with prediction, it is necessary to consider two state-of-the-art theories of modern physics -- which while having been around for decades, are still very much in the forefront of advanced thinking. These two theories are Superstrings and Zero Point Energy (ZPE).

According to Superstring Theory, all matter in the universe derives from portions of the void or vacuum (where nothing exists). In effect, the vacuum begins vibrating. These vibrations of the vacuum are called “superstrings” -- a rather strange term but one which helps scientists to visualize the properties of a vibrating vacuum in terms of infinitesimally super-small strings twisting, turning, knoting, and otherwise cavorting in the vacuum. It also allows one to visualize their interactions.

Superstrings are incredibly tiny little things, on the order 10-33 cm, that is to say, 1 divided by 1,000,000,000,000,000,000,000,000,000,000,000. This spatial dimension, which is ultimately derived from and entwined with Planck’s Constant [to be discussed below], can be compared to the dimensions of a small atom of 10-8 cm, or a nucleus of 10-13 cm -- at best, a difference of twenty orders of magnitude! In effect, superstrings are in a realm where it is necessary to abandon ordinary space and time concepts, particularly a space-time theory built upon the notion of points and/or continuity.

The concept that the vacuum is far from empty (and thus capable of creating superstrings) is also essential in the concept of the Zero-Point Field. ZPF can be thought of as the ether, the all-pervading energy that fills the fabric of our three dimensional space. The term, “zero-point” refers to zero degrees Kelvin (absolute zero) and implies that as one approaches absolute zero and the thermal vibrations of atoms and elementary particles vanish, there continues to exist a significant energy source which is not thermal in nature. In effect there is energy pervading our universe that goes beyond anything we’ve known before. The existence of the ZPF as one approaches absolute zero also connects with the theories of superconductivity, inasmuch as superconductivity invariably arises at oK.

All particles of matter can be thought of as a coherence in the ZPF. Coherence is essentially “sticking together, logically connected or integrated”; and is the basis of any fundamental particle. For example, an electron is simply a bunch (we’ll use the technical term here) of sticky superstrings stuck together by virtue of being immersed in the ZPF. The theories of ZPF coherence is well established in mainstream physics [9, 10], and is supported by the theories of system self-organization from chaos, for which Ilya Prigogine won the 1977 Nobel Prize in chemistry [11].

Zero-Point Energy not only pervades our universe, but is omnidirectional within it. The energy density of the ZPE is on the order of 1094 (as compared to nuclear energy densities of 1024). The ZPE energy density is thus seventy orders of magnitude greater than that of nuclear energy. For all extents and purposes, the amount of energy in the ZPE is infinite.

Furthermore, while the ZPE is electromagnetic in nature, quantum theory strongly suggests that it does not arise from electromagnetic propagations in our three dimensional space. By applying the formalism of Einstein's general relativity theory to the ZPE, Wheeler's Geometrodynamics [12] theorizes that the zero-point-energy arises from an orthogonal (90o angle) electric flux from a fourth (or higher) spatial dimension.

Essentially, a virtually infinite amount of energy is blowing through our three-dimensional universe in all directions, and occasionally, some of this energy finds itself, for whatever reason, cohering or self-organizing into elementary particles -- which by virtue of their existence encourages other coherences, and slowly but surely, our universe is constructed the old fashion way, one superstring after another.

Monoatomic Elements

Of particular interest in our quest to understand the characteristics of monoatomic elements and superconductivity, and connecting this understanding with the theories of ZPE and Superstrings, is a ground-breaking article by H. E. Puthoff of the Institute for Advanced Studies at Austin, Texas. Entitled “Gravity as a Zero-Point-Fluctuation Force” [13], Puthoff's article considers a concept originally due to A. D. Sakharov, and develops a point-particle--ZPF interaction model that accords well with Sakharov’s original hypothesis. Sakharov had proposed that “gravity is not a separately existing fundamental force, but rather an induced effect associated with zero-point-fluctuations (ZPF’s) of the vacuum, in much the same manner as the van der Waals and Casimir forces.” Puthoff goes on to derive an expression for the interaction potential or coupling constant, and then notes that for the two-dimensional motion, “a reduction factor of 4/9 is to be applied to the value of the coupling constant obtained for the general three dimensional case.”

The two-dimensional superconductivity for such superconductors as copper oxide and organic superconductors, when combined with Puthoff's calculations implies, according to Hudson, that a superconductor in two-dimensions (and effectively operating within the ZPE) will encounter a reduction of 4/9th in the gravitational interaction potential!

Another way of looking at it, is that quantum oscillations in a superconductor, resonating in two dimensions implies a weight loss of 4/9th, or 44.4% -- in accordance with his experimental observations. Hudson and others believes the superconducting, monoatomic elements are bending space-time!

This connection between monoatomic elements, superconductivity, and Zero-Point Energy is more than astounding; it is incredibly significant. The agreements between theory and experimental observation across a broad spectrum of quantum physical areas of interest is strongly suggestive of the validity of the overall concepts.

In this regard, it is worth noting that following the 1989 announcement of “Cold Fusion [14], the scientists B. Stanley Pons and Martin Fleischmann, later reported an observation of what they termed “white crude” in their original experiment. David Hudson believes this to be Rhodium and Iridium in their monoatomic state, and therefore that what Pons and Fleischmann had observed was not “cold fusion”, but superconductivity!

Somehow, all of the physics and chemistry of the last several decades is coming together into a unified theory! What a surprise! But also what a set of incredible implications!

Note : this article is taken form halexandria.org which is known as mystic well-known website. i suggest not too believe to the article in several topics.

Powered By Blogger